
openQA Documentation
openQA Team

Table of Contents
openQA starter guide. 1

1. Introduction . 2

2. Architecture . 3

3. Basic concepts . 4

3.1. Glossary . 4

3.2. Jobs. 5

3.3. Needles . 6

3.3.1. Areas . 6

3.3.2. Click points . 7

3.4. Configuration . 7

3.4.1. Locations. 8

3.4.2. Drop-in configurations . 8

3.5. Access management. 8

3.6. Job groups . 9

3.7. Cleanup. 9

4. Using the client script . 11

5. Testing openSUSE or Fedora . 12

5.1. Getting tests . 12

5.2. Getting openQA configuration . 12

5.3. Adding a new ISO to test. 13

6. Pitfalls . 15

openQA installation guide . 16

7. Introduction . 17

8. Container based setup . 18

8.1. Single-instance container. 18

8.1.1. How to run a test with single-instance container in 5 minutes . 18

8.1.2. Triggering and cloning existing jobs within single-instance container 18

8.2. Separate web UI and worker containers . 19

8.3. Custom configuration for containers . 19

9. Quick bootstrapping under openSUSE . 21

9.1. Directly on your machine . 21

9.2. openQA in a browser. 21

9.3. openQA in a container . 22

10. Custom installation - repositories and procedure . 23

10.1. Official repositories . 23

10.2. Development version repository . 23

10.3. Installation. 24

10.3.1. Preparations on SLE . 24

10.3.2. Installing openQA. 24

10.3.3. Installation from sources . 24

11. System requirements . 25

12. Basic configuration . 26

12.1. Apache proxy . 26

12.2. NGINX proxy . 26

12.3. TLS/SSL . 27

12.4. Database. 27

12.4.1. Example for connecting to local PostgreSQL database . 27

12.4.2. Example for connecting to remote PostgreSQL database. 28

12.5. User authentication. 28

12.5.1. OpenID . 28

12.5.2. OAuth2 . 29

12.5.3. Fake . 29

13. Run the web UI. 30

13.1. Additional considerations for zero-downtime upgrades . 30

14. Run openQA workers . 31

15. Where to now? . 33

16. Advanced configuration. 34

16.1. Cleanup. 34

16.2. Setting up git support . 34

16.2.1. Configuration of automatic needle commit feature . 34

16.3. Referer settings to auto-mark important jobs. 36

16.4. Worker settings . 36

16.5. Further systemd units for the worker . 36

16.5.1. Stopping/restarting workers without interrupting currently running jobs 37

16.6. Configuring remote workers. 37

16.7. Configuring AMQP message emission . 38

16.8. Configuring worker to use more than one openQA server . 38

16.9. Asset and test/needle caching . 39

16.10. Alternative caching implementations . 40

16.11. Enable linking files referred by job settings . 41

16.12. Enable custom hook scripts on "job done" based on result. 41

16.13. Automatic cloning of incomplete jobs . 43

16.14. Enable automatic database backup. 43

17. Auditing - tracking openQA changes. 44

17.1. List of events tracked by the auditing plugin . 45

18. Automatic system upgrades and reboots of openQA hosts . 46

19. Migrating from older databases. 47

20. Migrating PostgreSQL database on openSUSE . 48

21. Working on database-related performance problems . 51

21.1. Enable further statistics . 51

21.1.1. Make use of these statistics . 51

21.2. Further things to try . 51

21.3. Further resources . 52

22. Filesystem layout . 53

22.1. Terms and variables for certain directories used by openQA and isotovideo 54

22.1.1. Further notes. 55

23. Automatic installation of the operating systems for openQA machines . 56

24. Special network conditions. 57

24.1. WireGuard. 57

25. Troubleshooting. 59

25.1. Tests fail quickly. 59

25.2. KVM does not work . 59

25.3. OpenID login times out. 59

25.4. Performance testing . 59

openQA users guide . 61

26. Introduction . 62

27. Using job templates to automate jobs creation . 63

27.1. The problem . 63

27.2. Machines . 64

27.3. Medium Types (products) . 64

27.4. Test Suites . 64

27.5. Job Groups . 65

27.6. Variable expansion . 66

27.7. Variable precedence . 66

28. Use of the web interface . 68

28.1. Description of test suites . 68

28.2. /tests/overview - Customizable test overview page . 68

28.3. Review badges . 69

28.3.1. Meaning of the different colors . 70

28.4. Bug references, labels and flags . 70

28.4.1. Bug references . 70

28.4.2. Labels . 71

Overwrite result of job . 71

28.4.3. Flags. 72

flag:carryover . 72

28.5. Distinguish product and test issues bugref gh#708 . 72

28.6. Build tagging . 72

28.6.1. Tag builds with special comments on group overview. 72

28.6.2. Keeping important builds. 73

28.7. Filtering test results and builds . 73

https://github.com/os-autoinst/openQA/pull/708

28.8. Highlighting job dependencies in 'All tests' table. 74

28.9. Show previous results in test results page gh#538 . 74

28.10. Link to latest in scenario name gh#836 . 75

28.11. Add `latest' query route gh#815 . 75

28.12. Allow group overview query by result gh#531 . 76

28.13. Add web UI controls to select more builds in group_overview gh#804 76

28.14. More query parameters for configuring last builds gh#575 . 76

28.15. Web UI controls to filter only tagged or all builds gh#807. 77

28.16. Test result badges gh#5022 . 77

28.17. Carry over of bug references from previous jobs in same scenario 77

28.18. Pinning comments as group description . 78

28.19. Dark mode . 78

28.20. Developer mode . 78

28.20.1. Workflow for creating or updating needles . 78

28.21. Job group editor gh#2111. 79

28.21.1. YAML job templates editor. 79

28.21.2. Deprecated: Table-based (pre-migration) . 79

29. Configuring job groups via YAML documents . 81

29.1. Defaults . 81

29.2. YAML Aliases. 82

29.3. YAML Merge Keys . 83

29.4. General YAML documentation . 84

30. Use of the REST API . 86

30.1. Finding tests . 86

30.1.1. Remarks . 87

30.2. Triggering tests . 87

30.2.1. Cloning existing jobs - openqa-clone-job . 87

30.2.2. Spawning single new jobs - jobs post . 87

Further examples for advanced dependency handling . 87

30.2.3. Spawning multiple jobs based on templates - isos post . 88

Statistical investigation . 89

Defining test scenarios in YAML . 90

30.2.4. Remarks . 91

30.3. Job template YAML . 91

31. Asset handling . 92

31.1. Specifying assets required by a job . 92

31.2. Specifying assets created by a job . 93

31.2.1. Private assets. 94

32. Cleanup of assets, results and other data . 95

32.1. Cleanup strategy for assets . 95

32.2. Configuring limit for assets within job groups . 96

https://github.com/os-autoinst/openQA/pull/538
https://github.com/os-autoinst/openQA/pull/836
https://github.com/os-autoinst/openQA/pull/815
https://github.com/os-autoinst/openQA/pull/531
https://github.com/os-autoinst/openQA/pull/804
https://github.com/os-autoinst/openQA/pull/575
https://github.com/os-autoinst/openQA/pull/807
https://github.com/os-autoinst/openQA/pull/5022
https://github.com/os-autoinst/openQA/pull/2111

32.3. Configuring limit for groupless assets . 96

32.4. Timers and triggers . 96

32.5. Disabling cleanup . 97

33. CLI interface . 98

34. Suggested workflow for test review . 99

35. Where to now?. 100

openQA test developer guide. 101

36. Introduction . 102

37. Basic . 103

38. Test API . 104

39. How to write tests . 105

39.1. Test module interface . 105

39.1.1. run . 105

39.1.2. test_flags . 106

39.1.3. pre_run_hook. 106

39.1.4. post_fail_hook. 107

39.1.5. post_run_hook. 107

39.2. Notes on the Python API. 107

39.3. Example Perl test modules . 108

39.3.1. Boot to desktop . 108

39.3.2. Install software via zypper . 109

39.3.3. Sample X11 Test . 110

39.4. Example Python test modules . 110

39.4.1. openQA web UI sample test . 110

40. Variables . 112

41. Advanced test features. 113

41.1. Changing timeouts. 113

41.2. Capturing kernel exceptions and/or any other exceptions from the serial console 113

41.3. Traceability and reproducibility of tests . 114

41.3.1. General remarks on tracing. 114

41.3.2. Logging package versions used for test . 114

41.3.3. General remarks on reproducibility . 115

41.4. Assigning jobs to workers . 115

41.5. Running a custom worker engine . 117

41.6. Automatic retries of jobs . 117

41.7. Job dependencies . 117

41.7.1. Declaring dependencies . 118

Chained dependencies . 118

Parallel dependencies . 118

Dependency pinning . 119

41.7.2. Inter-machine dependencies. 119

41.7.3. Handling of related jobs on failure / cancellation / restart . 120

Further notes. 120

41.7.4. Handling of dependencies when cloning jobs . 120

41.7.5. Examples . 121

Specify machine explicitly . 121

Implicitly inherit machines from parent . 121

Conflicting machines prevent inheritance from parent. 121

Implicitly creating a dependency on same machine . 122

41.7.6. Notes regarding directly chained dependencies . 122

41.7.7. Worker requirements . 122

Examples . 123

41.8. Writing multi-machine tests . 124

41.9. Test synchronization and locking API . 124

41.10. Support Server based tests . 129

41.10.1. Preparing the supportserver. 129

41.10.2. Using the supportserver. 130

41.11. Using text consoles and the serial terminal . 132

41.11.1. Using a serial terminal . 134

41.11.2. Sending new lines and continuation characters . 137

41.11.3. Sending signals - ctrl-c and ctrl-d . 138

41.11.4. The virtio serial terminal implementation . 138

42. Test Development tricks . 140

42.1. Trigger new tests by modifying settings from existing test runs . 140

42.2. Backend variables for faster test execution . 140

42.3. Using snapshots to speed up development of tests . 141

42.3.1. Enable snapshots for each module . 141

42.3.2. Storing only the last successful snapshot. 142

42.4. Defining a custom test schedule or custom test modules . 142

42.4.1. EXCLUDE_MODULES . 142

42.4.2. INCLUDE_MODULES . 143

42.4.3. SCHEDULE . 143

42.4.4. SCHEDULE + ASSET_<NR>_URL . 143

42.5. Triggering tests based on an any remote Git refspec or open GitHub pull request 144

43. Running openQA jobs as CI checks . 146

43.1. Create and monitor openQA jobs from within the CI runner. 146

43.2. Use webhooks and status reporting APIs of GitHub . 147

43.3. Run isotovideo directly in the CI runner . 147

43.3.1. Setup a GitHub access token for openQA . 147

43.3.2. Setup webhook on GitHub . 147

44. Integrating test results from external systems. 149

openQA test harness result processing . 150

45. Introduction . 151

46. Usage . 152

46.1. openQA test distribution . 152

47. Available parser formats . 153

48. Extending the parser . 154

48.1. OOP Interface . 154

48.2. Structured data. 154

48.3. openQA internal test result storage. 155

openQA client . 156

49. Help. 157

50. Authentication . 158

50.1. Personal access token . 158

51. Features . 159

51.1. HTTP Methods . 159

51.2. HTTP Headers. 159

51.3. HTTP Body . 159

51.4. Forms . 160

51.5. JSON . 160

51.6. Unicode . 161

51.7. Host shortcuts. 161

51.8. Debugging . 162

52. Archive mode . 163

openQA pitfalls . 164

53. Needle editing . 165

54. 403 messages when using scripts . 166

55. Mixed production and development environment. 167

56. Performance impact . 168

57. DB migration from SQlite to postgreSQL . 169

58. Steps to debug developer mode setup . 170

Networking in openQA . 171

59. QEMU User Networking. 172

60. TAP Based Network. 173

60.1. Multi-machine test setup . 173

60.1.1. What os-autoinst-setup-multi-machine does. 174

Set up Open vSwitch . 174

Configure virtual interfaces. 174

Configure NAT with firewalld . 174

60.1.2. What is left to do after running os-autoinst-setup-multi-machine 174

GRE tunnels . 174

Configure openQA workers . 175

60.2. Verify the setup . 175

60.2.1. Start test VMs manually . 176

60.3. Debugging Open vSwitch Configuration . 177

60.4. Debugging GRE tunnels and MTU sizes . 178

60.4.1. Initial setup for all experiments. 178

60.4.2. Simple scenario . 179

60.4.3. Scenario with openvswitch . 179

60.4.4. GRE tunnel made in openvswitch . 180

61. VDE Based Network . 181

61.1. Basic, Single Machine Tests . 181

openQA developer guide . 182

62. Introduction . 183

63. Development guidelines . 184

63.1. Repository URLs . 184

63.2. Rules for commits . 184

63.3. Code style suggestions . 185

64. Getting involved into development. 186

65. Technologies . 187

66. Folder structure . 188

67. Development setup . 189

67.1. Dependencies . 189

67.2. Conducting tests . 189

67.3. Customize base directory. 190

67.4. Customize configuration directory . 191

67.5. Setting up the PostgreSQL database . 191

67.5.1. Importing production data . 192

67.6. Manual daemon setup . 192

67.6.1. Further tips . 193

68. Handling of dependencies. 194

68.1. Javascript and CSS . 194

68.2. Perl and other packages. 194

68.3. Remarks regarding CI . 194

69. Managing the database . 195

69.1. When is it required to update the database schema?. 195

69.2. How to update the database schema . 195

69.3. How to add fixtures to the database . 196

70. Adding new authentication module . 197

71. Running tests of openQA itself . 198

71.1. Run tests without container . 198

71.2. Run tests within a container . 198

71.2.1. Tips . 199

71.3. Logging behavior . 200

71.4. Test runtime limits . 200

72. CircleCI workflow . 202

72.1. Dependency artefacts . 202

72.2. Managing and troubleshooting dependencies . 202

72.3. Run tests locally using a container . 202

72.4. Run tests using the circleci tool . 203

72.5. Changing config.cnf. 203

73. Building plugins. 204

74. Checking for JavaScript problems. 207

75. Profiling the web UI . 208

75.1. Note . 208

76. Making documentation changes . 209

openQA branding . 210

77. Web UI template . 211

Containerized setup. 212

78. Get container images . 213

78.1. Download Fedora-based images from the Docker Hub . 213

78.2. Build openSUSE-based images locally . 213

79. Setup with Fedora-based images . 214

79.1. Data storage and directory structure . 214

79.2. Update firewall rules . 214

79.3. Run the data and web UI containers. 215

79.3.1. Generate and configure API credentials. 215

79.4. Run the worker container . 215

79.5. Enable services. 215

79.6. Get tests, ISOs and create disks . 216

80. Setup openQA with openSUSE-based images and docker-compose . 217

80.1. Configuration . 217

80.2. Build images . 217

80.3. Run the web UI containers in HA mode. 217

80.4. Generate and configure API credentials . 218

80.5. Run the worker container . 218

80.6. Get tests, ISOs and create disks . 219

81. Running jobs. 220

82. Further configuration options . 221

82.1. Change the OpenID provider . 221

82.2. Adding workers on other hosts . 221

82.3. Keeping all data in the Data Volume container . 222

82.4. Keeping all data on the host system . 222

82.5. Developing tests with container setup . 223

openQA starter guide

1

Chapter 1. Introduction
openQA is an automated test tool that makes it possible to test the whole installation process of an
operating system. It uses virtual machines to reproduce the process, check the output (both serial
console and screen) in every step and send the necessary keystrokes and commands to proceed to
the next. openQA can check whether the system can be installed, whether it works properly in 'live'
mode, whether applications work or whether the system responds as expected to different
installation options and commands.

Even more importantly, openQA can run several combinations of tests for every revision of the
operating system, reporting the errors detected for each combination of hardware configuration,
installation options and variant of the operating system.

openQA is free software released under the GPLv2 license. The source code and documentation are
hosted in the os-autoinst organization on GitHub.

This document describes the general operation and usage of openQA. The main goal is to provide a
general overview of the tool, with all the information needed to become a happy user.

For a quick start, if you already have an openQA instance available you can refer to the section
Cloning existing jobs - openqa-clone-job directly to trigger a new test based on already existing job.
For a quick installation refer directly to Quick bootstrapping under openSUSE or Container based
setup.

For the installation of openQA in general see the Installation Guide, as a user of an existing instance
see the Users Guide. More advanced topics can be found in other documents. All documents are
also available in the official repository.

2

http://www.gnu.org/licenses/gpl-2.0.html
https://github.com/os-autoinst
https://github.com/os-autoinst/openQA

Chapter 2. Architecture
Although the project as a whole is referred to as openQA, there are in fact several components that
are hosted in separate repositories as shown in the following figure.

Figure 1. openQA architecture

The heart of the test engine is a standalone application called 'os-autoinst' (blue). In each execution,
this application creates a virtual machine and uses it to run a set of test scripts (red). 'os-autoinst'
generates a video, screenshots and a JSON file with detailed results.

'openQA' (green) on the other hand provides a web based user interface and infrastructure to run
'os-autoinst' in a distributed way. The web interface also provides a JSON based REST-like API for
external scripting and for use by the worker program. Workers fetch data and input files from
openQA for os-autoinst to run the tests. A host system can run several workers. The openQA web
application takes care of distributing test jobs among workers. Web application and workers can
run on the same machine as well as connected via network on multiple machines within the same
network or distributed. Running the web application as well as the workers in the cloud is perfectly
possible.

Note that the diagram shown above is simplified. There exists a more sophisticated version which is
more complete and detailed. (The diagram can be edited via its underlying GraphML file.)

3

images/architecture.svg
images/architecture.graphml

Chapter 3. Basic concepts

3.1. Glossary
The following terms are used within the context of openQA

test modules an individual test case in a single perl module file, e.g. "sshxterm". If not
further specified a test module is denoted with its "short name" equivalent to
the filename including the test definition. The "full name" is composed of the
test group (TBC), which itself is formed by the top-folder of the test module
file, and the short name, e.g. "x11-sshxterm" (for x11/sshxterm.pm)

test suite a collection of test modules, e.g. "textmode". All test modules within one test
suite are run serially

job one run of individual test cases in a row denoted by a unique number for one
instance of openQA, e.g. one installation with subsequent testing of
applications within gnome

test run equivalent to job

test result the result of one job, e.g. "passed" with the details of each individual test
module

test step the execution of one test module within a job

distri a test distribution but also sometimes referring to a product (CAUTION:
ambiguous, historically a "GNU/Linux distribution"), composed of multiple
test modules in a folder structure that compose test suites, e.g. "opensuse" (test
distribution, short for "os-autoinst-distri-opensuse")

needles reference images to assert whether what is on the screen matches
expectations and to locate elements on the screen the tests needs to interact
with (e.g. to locate a button to click on it)

product the main "system under test" (SUT), e.g. "openSUSE", also called "Medium
Types" in the web interface of openQA

job group equivalent to product, used in context of the webUI

version one version of a product, don’t confuse with builds, e.g. "Tumbleweed"

flavor a specific variant of a product to distinguish differing variants, e.g. "DVD"

4

arch an architecture variant of a product, e.g. "x86_64"

machine additional variant of machine, e.g. used for "64bit", "uefi", etc.

scenario A composition of <distri>-<version>-<flavor>-<arch>-<test_suite>@<machine>,
e.g. "openSUSE-Tumbleweed-DVD-x86_64-gnome@64bit", nicknamed koala

build Different versions of a product as tested, can be considered a "sub-version" of
version, e.g. "Build1234"; CAUTION: ambiguity: either with the prefix "Build"
included or not

3.2. Jobs
One of the most important features of openQA is that it can be used to test several combinations of
actions and configurations. For every one of those combinations, the system creates a virtual
machine, performs certain steps and returns an overall result. Every one of those executions is
called a 'job'. Every job is labeled with a numeric identifier and has several associated 'settings' that
will drive its behavior.

A job goes through several states. Here is (an incomplete list) of these states:

• scheduled Initial state for newly created jobs. Queued for future execution.

• setup/running/uploading In progress.

• cancelled The job was explicitly cancelled by the user or was replaced by a clone (see below)
and the worker has not acknowledged the cancellation yet.

• done The worker acknowledged that the execution finished or the web UI considers the job as
abandoned by the worker.

Jobs in the final states 'cancelled' and 'done' have typically gone through a whole sequence of steps
(called 'testmodules') each one with its own result. But in addition to those partial results, a finished
job also provides an overall result from the following list.

• none For jobs that have not reached one of the final states.

• passed No critical check failed during the process. It does not necessarily mean that all
testmodules were successful or that no single assertion failed.

• failed At least one assertion considered to be critical was not satisfied at some point.

• softfailed At least one known, non-critical issue has been found. That could be that
workaround needles are in place, a softfailure has been recorded explicitly via
record_soft_failure (from os-autoinst) or a job failure has been ignored explicitly via a job
label.

• timeout_exceeded The job was aborted because MAX_JOB_TIME or MAX_SETUP_TIME has been
exceeded, see Changing timeout for details.

• skipped Dependencies failed so the job was not started.

• obsoleted The job was superseded by scheduling a new product.

5

• parallel_failed/parallel_restarted The job could not continue because a job which is supposed
to run in parallel failed or was restarted.

• user_cancelled/user_restarted The job was cancelled/restarted by the user.

• incomplete The test execution failed due to an unexpected error, e.g. the network connection to
the worker was lost.

Sometimes, the reason of a failure is not an error in the tested operating system itself, but an
outdated test or a problem in the execution of the job for some external reason. In those situations,
it makes sense to re-run a given job from the beginning once the problem is fixed or the tests have
been updated. This is done by means of 'cloning'. Every job can be superseded by a clone which is
scheduled to run with exactly the same settings as the original job. If the original job is still not in
'done' state, it’s cancelled immediately. From that point in time, the clone becomes the current
version and the original job is considered outdated (and can be filtered in the listing) but its
information and results (if any) are kept for future reference.

3.3. Needles
One of the main mechanisms for openQA to know the state of the virtual machine is checking the
presence of some elements in the machine’s 'screen'. This is performed using fuzzy image matching
between the screen and the so called 'needles'. A needle specifies both the elements to search for
and a list of tags used to decide which needles should be used at any moment.

A needle consists of a full screenshot in PNG format and a json file with the same name (e.g. foo.png
and foo.json) containing the associated data, like which areas inside the full screenshot are relevant
or the mentioned list of tags.

{
 "area" : [
 {
 "xpos" : INTEGER,
 "ypos" : INTEGER,
 "width" : INTEGER,
 "height" : INTEGER,
 "type" : ("match" | "ocr" | "exclude"),
 "match" : INTEGER, // 0-100. similarity percentage
 "click_point" : CLICK_POINT, // Optional click point
 },
 ...
],
 "tags" : [
 STRING, ...
]
}

3.3.1. Areas

There are three kinds of areas:

6

• Regular areas define relevant parts of the screenshot. Those must match with at least the
specified similarity percentage. Regular areas are displayed as green boxes in the needle editor
and as green or red frames in the needle view (green for matching areas, red for non-matching
ones).

• OCR areas also define relevant parts of the screenshot. However, an OCR algorithm is used for
matching. In the needle editor OCR areas are displayed as orange boxes. To turn a regular area
into an OCR area within the needle editor, double click the concerning area twice. Note that
such needles are only rarely used.

• Exclude areas can be used to ignore parts of the reference picture. In the needle editor exclude
areas are displayed as red boxes. To turn a regular area into an exclude area within the needle
editor, double click the concerning area. In the needle view exclude areas are displayed as gray
boxes.

3.3.2. Click points

Each regular match area in a needle can optionally contain a click point. This is used with the
testapi::assert_and_click function to match GUI elements such as buttons and then click inside the
matched area.

{
 "xpos" : INTEGER, // Relative coordinates inside the match area
 "ypos" : INTEGER,
 "id" : STRING, // Optional
}

Each click point can have an id, and if a needle contains multiple click points you must pass it to
testapi::assert_and_click to select which click point to use.

3.4. Configuration
The different components of openQA read their configuration from the following files:

• openqa.ini, openqa.ini.d/*.ini: These files are the "web UI" config. Services providing the web
interface and related services such as the scheduler are configured via these files.

• database.ini, database.ini.d/*.ini: These files are also used by services providing the web
interface and related services such as the scheduler. It is used to configure how those services
connect to the database.

• workers.ini, workers.ini.d/*.ini: These files are used to configure the openQA worker including
its additional cache service.

• client.conf, client.conf.d/*.conf: These files contain API credentials and are used by the
openQA worker and other tooling such as openqa-cli and openqa-clone-job to authenticate with
the web interface. One API key/secret can be configured per web UI host.

If these files are not present, defaults are used.

Example configuration files are installed under /usr/share/doc/openqa/examples and in the Git

7

https://github.com/os-autoinst/openQA/tree/master/etc/openqa

repository under etc/openqa. Continue reading the next sections for where you can place the actual
configuration files and the possibility of creating drop-in configuration files.

3.4.1. Locations

All configuration files can be placed under /etc/openqa, e.g. /etc/openqa/openqa.ini. That is where
administrators are expected to store system-wide configuration.

Configuration files are also looked up under /usr/etc/openqa where a package maintainer can place
default values deviating from upstream defaults.

The client configuration can also be put under ~/.config/openqa/client.conf.

For development, checkout the section about customizing the configuration directory.

3.4.2. Drop-in configurations

It is recommended to split the configuration into multiple files and store these "drop-in"
configuration files in the ….d sub directory, e.g. /etc/openqa/openqa.ini.d/01-plugins.ini. This is
possible for all config files, e.g. /etc/openqa/workers.ini.d/01-bare-metal-instances.ini and
/etc/openqa/client.conf.d/01-internal.conf can be created as well to configure workers and API
credentials. This works also on other locations, e.g. /usr/etc/openqa/openqa.ini.d/01-plugins.ini
will be found as well. Settings from drop-in configurations override settings from the main config
files. Drop-in configurations are read in alphabetical order and subsequent files override settings
from preceding ones.

3.5. Access management
Some actions in openQA require special privileges. openQA provides authentication through
openID. By default, openQA is configured to use the openSUSE openID provider, but it can very
easily be configured to use any other valid provider. Every time a new user logs into an instance, a
new user profile is created. That profile only contains the openID identity and two flags used for
access control:

• operator Means that the user is able to manage jobs, performing actions like creating new jobs,
cancelling them, etc.

• admin Means that the user is able to manage users (granting or revoking operator and admin
rights) as well as job templates and other related information (see the the corresponding
section).

Many of the operations in an openQA instance are not performed through the web interface but
using the REST-like API. The most obvious examples are the workers and the scripts that fetch new
versions of the operating system and schedule the corresponding tests. Those clients must be
authorized by an operator using an API key with an associated shared secret.

For that purpose, users with the operator flag have access in the web interface to a page that allows
them to manage as many API keys as they may need. For every key, a secret is automatically
generated. The user can then configure the workers or any other client application to use whatever
pair of API key and secret owned by him. Any client to the REST-like API using one of those API keys

8

https://github.com/os-autoinst/openQA/tree/master/etc/openqa
https://github.com/os-autoinst/openQA/tree/master/etc/openqa
https://en.opensuse.org/openSUSE:Packaging_UsrEtc#Variant_1_(ideal_case)
http://en.wikipedia.org/wiki/OpenID
http://en.wikipedia.org/wiki/Application_programming_interface_key

will be considered to be acting on behalf of the associated user. So the API key not only has to be
correct and valid (not expired), it also has to belong to a user with operator rights.

For more insights about authentication, authorization and the technical details of the openQA
security model, refer to the detailed blog post about the subject by the openQA development team.

3.6. Job groups
A job can belong to a job group. Those job groups are displayed on the index page when there are
recent test results in these job groups and in the Job Groups menu on the navigation bar. From there
the job group overview pages can be accessed. Besides the test results the job group overview pages
provide a description about the job group and allow commenting.

Job groups have properties. These properties are mostly cleanup related. The configuration can be
done in the operators menu for job groups.

It is also possible to put job groups into categories. The nested groups will then inherit properties
from the category. The categories are meant to combine job groups with common builds so test
results for the same build can be shown together on the index page.

3.7. Cleanup

IMPORTANT
openQA automatically deletes data that it considers "old" based on different
settings. For example old jobs and assets are deleted at some point.

The following cleanup settings can be done on job-group-level:

size limit Limits size of assets

keep logs for Specifies how long logs of a non-important job are retained
after it finished

keep important logs for How long logs of an important job are retained after it finished

keep results for specifies How long results of a non-important job are retained
after it finished

keep important results for How long results of an important job are retained after it
finished

NOTE Deletion of job results includes deletion of logs and will cause the job to be completely
removed from the database.

NOTE Checkout the Cleanup section for more details and the Build tagging section for how to mark
a job as important.

NOTE New groups use the limits configured in the [default_group_limits] section of the web UI

9

http://lizards.opensuse.org/2014/02/28/about-openqa-and-authentication/

configuration. Jobs outside of any group use the limits configured in the [no_group_limits] section
of the web UI configuration.

NOTE Archiving of important jobs can be enabled. Checkout the related settings within the
[archiving] section of the config file for details.

10

Chapter 4. Using the client script
Just as the worker uses an API key+secret every user of the client script must do the same. The
same API key+secret as previously created can be used or a new one created over the webUI.

The personal configuration should be stored in a file ~/.config/openqa/client.conf in the same
format as previously described for the client.conf, i.e. sections for each machine, e.g. localhost.

11

Chapter 5. Testing openSUSE or Fedora
An easy way to start using openQA is to start testing openSUSE or Fedora as they have everything
setup and prepared to ease the initial deployment. If you want to play deeper, you can configure
the whole openQA manually from scratch, but this document should help you to get started faster.

5.1. Getting tests
You can point CASEDIR and NEEDLES_DIR to Git repositories. openQA will checkout those repositories
automatically and no manual setup is needed.

Otherwise you will need to clone tests and needles manually. For this, clone a subdirectory under
/var/lib/openqa/tests for each test distribution you need, e.g. /var/lib/openqa/tests/opensuse for
openSUSE tests.

The repositories will be kept up-to-date if git_auto_update is enabled in the web UI configuration
(which is the default). The updating is triggered when new tests are scheduled. For a periodic
update (to avoid getting too far behind) you can enable the systemd unit openqa-enqueue-git-auto-
update.timer.

You can get openSUSE tests and needles from GitHub. To make it easier, you can just run
/usr/share/openqa/script/fetchneedles. It will download tests and needles to the correct location
with the correct permissions.

Fedora’s tests are also in git. To use them, you may do:

cd /var/lib/openqa/share/tests
mkdir fedora
cd fedora
git clone https://pagure.io/fedora-qa/os-autoinst-distri-fedora.git
cd ..
chown -R geekotest fedora/

5.2. Getting openQA configuration
To get everything configured to actually run the tests, there are plenty of options to set in the admin
interface. If you plan to test openSUSE Factory, using tests mentioned in the previous section, the
easiest way to get started is the following command:

/var/lib/openqa/share/tests/opensuse/products/opensuse/templates [--apikey API_KEY]
[--apisecret API_SECRET]

This will load some default settings that were used at some point of time in openSUSE production
openQA. Therefore those should work reasonably well with openSUSE tests and needles. This script
uses /usr/share/openqa/script/openqa-load-templates, consider reading its help page (--help) for
documentation on possible extra arguments.

12

https://github.com/os-autoinst/os-autoinst-distri-opensuse
https://pagure.io/fedora-qa/os-autoinst-distri-fedora

For Fedora, similarly, you can call:

/var/lib/openqa/share/tests/fedora/fifloader.py -c -l templates.fif.json templates-
updates.fif.json

For this to work you need to have a client.conf with API key and secret, because fifloader doesn’t
support setting them on the command line. See the openQA client section for more details on this.
Also see the docstring of fifloader.py for details on the alternative template format Fedora uses.

Some Fedora tests require special hard disk images to be present in
/var/lib/openqa/share/factory/hdd/fixed. The createhdds.py script in the createhdds repository can
be used to create these. See the documentation in that repo for more information.

5.3. Adding a new ISO to test
To start testing a new ISO put it in /var/lib/openqa/share/factory/iso and call the following
commands:

Run the first test
openqa-cli api -X POST isos \
 ISO=openSUSE-Factory-NET-x86_64-Build0053-Media.iso \
 DISTRI=opensuse \
 VERSION=Factory \
 FLAVOR=NET \
 ARCH=x86_64 \
 BUILD=0053

If your openQA is not running on port 80 on 'localhost', you can add option
--host=http://otherhost:9526 to specify a different port or host.

WARNING

Use only the ISO filename in the 'client' command. You must place the file in
/var/lib/openqa/share/factory/iso. You cannot place the file elsewhere and
specify its path in the command. However, openQA also supports a remote-
download feature of assets from trusted domains.

For Fedora, a sample run might be:

Run the first test
openqa-cli api -X POST isos \
 ISO=Fedora-Everything-boot-x86_64-Rawhide-20160308.n.0.iso \
 DISTRI=fedora \
 VERSION=Rawhide \
 FLAVOR=Everything-boot-iso \
 ARCH=x86_64 \
 BUILD=Rawhide-20160308.n.0

13

https://pagure.io/fedora-qa/createhdds

More details on triggering tests can also be found in the Users Guide.

14

Chapter 6. Pitfalls
Take a look at Documented Pitfalls.

15

openQA installation guide

16

Chapter 7. Introduction
openQA is an automated test tool that makes it possible to test the whole installation process of an
operating system. It is free software released under the GPLv2 license. The source code and
documentation are hosted in the os-autoinst organization on GitHub.

This document provides the information needed to install and setup the tool, as well as information
useful for everyday administration of the system. It is assumed that the reader is already familiar
with the concepts of openQA and has already read the Getting Started Guide, also available at the
official repository.

Continue with the next section Container based setup to setup a simple, ready-to-use container
based openQA instance which is useful for a single user setup. For a quick bootstrapping under
openSUSE go to Quick bootstrapping. Else, continue with the more advanced section about Custom
installation. For a setup suitable to develop openQA itself, have a look at the Development setup
section.

17

http://www.gnu.org/licenses/gpl-2.0.html
https://github.com/os-autoinst
https://github.com/os-autoinst/openQA

Chapter 8. Container based setup
openQA is provided in containers. Multiple variants exist.

8.1. Single-instance container
The easiest and quickest way to spawn a single instance of openQA with a single command line
using the podman container engine is the following:

podman run --name openqa --device /dev/kvm -p 1080:80 -p 1443:443 --rm -it \
 registry.opensuse.org/devel/openqa/containers/openqa-single-instance

Once the startup has finished, the web UI is accessible via http://localhost:1080 or
https://localhost:1443.

8.1.1. How to run a test with single-instance container in 5 minutes

► images/openqa-in-5-minutes.webm (video)

Running openQA job within 5 minutes

8.1.2. Triggering and cloning existing jobs within single-instance container

For triggering new tests or cloning existing ones you can use openqa-cli which is conveniently
available inside the container. The quickest and easiest way would be to enter an interactive
session inside the already running single-instance container. You can spawn a new shell via:

podman exec -ti openqa /bin/bash

From there, you can trigger a new job or clone an existing one, e.g.:

openqa-cli schedule --monitor \
 --param-file SCENARIO_DEFINITIONS_YAML=scenario-definitions.yaml \
 DISTRI=example VERSION=0 FLAVOR=DVD ARCH=x86_64 \
 TEST=simple_boot _GROUP_ID=0 BUILD=test \
 CASEDIR=https://github.com/os-autoinst/os-autoinst-distri-example.git \
 NEEDLES_DIR=%%CASEDIR%%/needles

openqa-clone-job https://openqa.opensuse.org/tests/1

More details on triggering tests can also be found in the Users Guide.

You can also run the container and directly clone tests, e.g.:

18

http://localhost:1080
https://localhost:1443
images/openqa-in-5-minutes.webm

podman run -e skip_suse_specifics= -e skip_suse_tests= \
 --name openqa --device /dev/kvm -p 1080:80 -p 1443:443 --rm \
 -it registry.opensuse.org/devel/openqa/containers/openqa-single-instance \
 https://openqa.opensuse.org/tests/1

The skip_suse_specifics= and skip_suse_tests= options ensure the test files and needles required
for openSUSE/SUSE tests are downloaded. Refer to the example video above and the get testing
section for more details.

8.2. Separate web UI and worker containers
As an alternative also separate containers are provided for both the web UI and worker.

For example the web UI container can be pulled and started using the podman container engine:

podman run -p 1080:80 -p 1443:443 --rm -it
registry.opensuse.org/devel/openqa/containers15.6/openqa_webui:latest

The worker container can be pulled and started with:

podman run --rm -it
registry.opensuse.org/devel/openqa/containers15.6/openqa_worker:latest

8.3. Custom configuration for containers
To supply a custom openQA config file, use the -v parameter. This also works for the database
config file. Note that if a custom database config file is specified, no database is launched within the
container. By default, the web UI container uses the self-signed certificate that comes with
Mojolicious. To supply a different certificate, use the -v parameter. Example for running openQA
with a custom config and certificate:

podman run -p 1080:80 -p 1443:443 \
 -v ./container/webui/test-cert.pem:/etc/apache2/ssl.crt/server.crt:z \
 -v ./container/webui/test-key.pem:/etc/apache2/ssl.key/server.key:z \
 -v ./container/webui/test-cert.pem:/etc/apache2/ssl.crt/ca.crt:z \
 -v ./container/webui/conf/openqa.ini:/data/conf/openqa.ini:z \
 --rm -it registry.opensuse.org/devel/openqa/containers15.6/openqa_webui:latest

The same works for the workers container where you most likely want to to supply workers.ini and
client.conf:

19

podman run \
 -v ./container/worker/conf/workers.ini:/data/conf/workers.ini:z \
 -v ./container/worker/conf/client.conf:/data/conf/client.conf:z \
 --rm -it registry.opensuse.org/devel/openqa/containers15.6/openqa_worker:latest

This examples assume the working directory is an openQA checkout. To avoid doing a checkout,
you can also grab the config files from the webui/conf and worker/conf directory listings on GitHub.

To learn more about how to run workers checkout the Run openQA workers section.

For creating a first test job, checkout the Triggering tests section. Note that the commands
mentioned there can also be invoked within a container, e.g.:

podman run \
 --rm -it registry.opensuse.org/devel/openqa/containers15.6/openqa_webui:latest \
 openqa-cli --help

Checkout the containerized setup section for more details.

Take a look at openSUSE’s registry for all available container images.

20

https://github.com/os-autoinst/openQA/tree/master/container/webui/conf
https://github.com/os-autoinst/openQA/tree/master/container/worker/conf
https://registry.opensuse.org/cgi-bin/cooverview?srch_term=project%3Ddevel%3AopenQA

Chapter 9. Quick bootstrapping under
openSUSE
To quickly get a working openQA installation, you can use the openqa-bootstrap script. It essentially
automates the steps mentioned in the Custom installation section.

9.1. Directly on your machine
On openSUSE Leap and openSUSE Tumbleweed to setup openQA on your machine simply
download and execute the openqa-bootstrap script as root - it will do the rest for you:

curl -s https://raw.githubusercontent.com/os-autoinst/openQA/master/script/openqa-
bootstrap | bash -x

The script is also available from an openSUSE package to install from:

zypper in openQA-bootstrap
/usr/share/openqa/script/openqa-bootstrap

openQA-bootstrap supports to immediately clone an existing job simply by supplying openqa-clone-
job parameters directly for a quickstart:

/usr/share/openqa/script/openqa-bootstrap --from openqa.opensuse.org 12345
SCHEDULE=tests/boot/boot_to_desktop,tests/x11/kontact

The above command will bootstrap an openQA installation and immediately afterwards start a
local test job clone from a test job from a remote instance with optional, overridden parameters.
More information about openqa-clone-job can be found in Cloning existing jobs - openqa-clone-job.

You can also run openqa-bootstrap repeatedly. For example when you stop a container and the
openQA daemons and database are stopped, calling openqa-bootstrap start will start necessary
daemons again.

9.2. openQA in a browser
You can try out openqa-bootstrap in a container environment like GitHub Codespaces.

On GitHub openQA, click on the "Code" button and select "Codespaces". Just click on the plus sign to
create a new Codespace. Or use this link as a quickstart to resume existing instances or create new
ones.

It will run openqa-bootstrap in the background. If the codespace environment is ready, open a new
VSCode terminal and type

21

https://docs.github.com/en/codespaces
https://github.com/os-autoinst/openQA
https://codespaces.new/os-autoinst/openQA?quickstart=1

tail -f /var/log/openqa-bootstrap.log

The Web UI instance can be opened as soon as you get a popup that there is a webserver available
on port 80.

You can now use openqa-clone-job to run jobs in this instance.

After stopping and resuming a codespace instance, run

/usr/share/openqa/script/openqa-bootstrap start

to start the openQA daemons again.

Be sure to delete codespace instances if you don’t use them anymore, as even stopped instances will
consume storage of your monthly limit.

9.3. openQA in a container
You can also setup a systemd-nspawn container with openQA with the following commands. and
you need to have no application listening on port 80 yet because the container will share the host
system’s network stack.

zypper in openQA-bootstrap
/usr/share/openqa/script/openqa-bootstrap-container

systemd-run -tM openqa1 /bin/bash # start a shell in the container

22

Chapter 10. Custom installation -
repositories and procedure
Keep in mind that there can be disruptive changes between openQA versions. You need to be sure
that the webui and the worker that you are using have the same version number or, at least, are
compatible.

For example, the packages distributed with older versions of openSUSE Leap are not compatible
with the version on Tumbleweed. And the package distributed with Tumbleweed may not be
compatible with the version in the development package.

10.1. Official repositories
The easiest way to install openQA is from distribution packages.

• For SUSE Linux Enterprise (SLE), openSUSE Leap and Tumbleweed packages are available.

• For Fedora, packages are available in the official repositories for Fedora 23 and later.

10.2. Development version repository
You can find the development version of openQA in OBS in the openQA:devel repository.

To add the development repository to your system, you can use these commands.

openSUSE Tumbleweed
zypper ar -p 95 -f
'http://download.opensuse.org/repositories/devel:openQA/openSUSE_Tumbleweed'
devel_openQA

openSUSE Leap/SLE
zypper ar -p 95 -f
'http://download.opensuse.org/repositories/devel:openQA/$releasever' devel_openQA
zypper ar -p 90 -f
'http://download.opensuse.org/repositories/devel:openQA:Leap:$releasever/$releasever'
devel_openQA_Leap

NOTE
If you installed openQA from the official repository first, you may need to change
the vendor of the dependencies.

openSUSE Tumbleweed and Leap
zypper dup --from devel_openQA --allow-vendor-change

openSUSE Leap
zypper dup --from devel_openQA_Leap --allow-vendor-change

23

https://build.opensuse.org/project/show/devel:openQA

10.3. Installation

10.3.1. Preparations on SLE

On SLE certain modules have to be enabled. Afterwards the instructions for openSUSE apply.

. /etc/os-release
SUSEConnect -p sle-module-desktop-applications/$VERSION_ID/$CPU
SUSEConnect -p sle-module-development-tools/$VERSION_ID/$CPU
SUSEConnect -p sle-we/$VERSION_ID/$CPU -r $sled_key
SUSEConnect -p PackageHub/$VERSION_ID/$CPU

10.3.2. Installing openQA

You can install the main openQA server package using these commands.

openSUSE
zypper in openQA

Fedora
dnf install openqa openqa-httpd

To install the openQA worker package use the following.

SLE/openSUSE
zypper in openQA-worker

Different convenience packages exist for convenience in openSUSE, for example: openQA-local-db to
install the server including the setup of a local PostgreSQL database or openQA-single-instance
which sets up a web UI server, a web proxy as well as a local worker. Install openQA-client if you
only want to interact with existing, external openQA instances.

10.3.3. Installation from sources

Installing is not required for development purposes and most components of openQA can be called
directly from the repository checkout.

To install openQA from sources make sure to install all dependencies as explained in Dependencies.
Then one can call

make install

The directory prefix can be controlled with the optional environment variable DESTDIR.

From then on continue with the Basic configuration.

24

Chapter 11. System requirements
To run tests based on the default qemu backend the following hardware specifications are
recommended per openQA worker instance:

• 1x CPU core with 2x hyperthreads (or 2x CPU cores)

• 8GB RAM

• 40GB HDD (preferably SSD or NVMe)

25

Chapter 12. Basic configuration
For a local instance setup you can simply execute the script:

/usr/share/openqa/script/configure-web-proxy

This will automatically setup a local Apache http proxy. The script also supports NGINX and a
custom port to listen on. Try --help to learn about the available options. Read on for more detailed
setup instructions with all the details.

NOTE
The web proxy might not be allowed to connect to openQA when SELinux is
enabled. Therefore the configure-web-proxy script will automatically run semanage
boolean -m -1 httpd_can_network_connect on SELinux systems to change that.

If you wish to run openQA behind an http proxy (Apache, NGINX, …) then see the
openqa.conf.template config file in /etc/apache2/vhosts.d (openSUSE) or /etc/httpd/conf.d
(Fedora) when using apache2 or the config files in /etc/nginx/vhosts.d for NGINX.

12.1. Apache proxy
To make everything work correctly on openSUSE when using Apache, you need to enable the
'headers', 'proxy', 'proxy_http', 'proxy_wstunnel' and 'rewrite' modules using the command
'a2enmod'. This is not necessary on Fedora.

openSUSE Only
You can check what modules are enabled by using 'a2enmod -l'
a2enmod headers
a2enmod proxy
a2enmod proxy_http
a2enmod proxy_wstunnel
a2enmod rewrite

For a basic setup, you can copy openqa.conf.template to openqa.conf and modify the ServerName
setting if required. This will direct all HTTP traffic to openQA.

cp /etc/apache2/vhosts.d/openqa.conf.template /etc/apache2/vhosts.d/openqa.conf

12.2. NGINX proxy
For a basic setup, you can copy openqa.conf.template to openqa.conf and modify the server_name
setting if required. This will direct all HTTP traffic to openQA.

cp /etc/nginx/vhosts.d/openqa.conf.template /etc/nginx/vhosts.d/openqa.conf

26

Note that the default config in openqa.conf.template is using the keyword default_server in the
listen statement. This will only change the behaviour when accessing the server via its IP address.
This means that the default vhost for localhost in nginx.conf will take precedence when accessing
the server via localhost. You might want to disable it.

If you use the openqa-upstreams.inc which is included with the upstream sources and openQA
packages, you may want to customize the size of the shared memory segment according to the
formula: page_size * 8

For openQA you need to set httpsonly = 0 as described in the TLS/SSL section below, if you do not
setup NGINX for SSL.

12.3. TLS/SSL
By default openQA expects to be run with HTTPS. The openqa-ssl.conf.template Apache config file
is available as a base for creating the Apache config; you can copy it to openqa-ssl.conf and
uncomment any lines you like, then ensure a key and certificate are installed to the appropriate
location (depending on distribution and whether you uncommented the lines for key and cert
location in the config file). On openSUSE, you should also add SSL to the APACHE_SERVER_FLAGS
so it looks like this in /etc/sysconfig/apache2:

APACHE_SERVER_FLAGS="SSL"

If you don’t have a TLS/SSL certificate for your host you must turn HTTPS off. You can do that in the
web UI configuration:

[openid]
httpsonly = 0

12.4. Database
openQA uses PostgreSQL as database. By default, a database with name openqa and geekotest user
as owner is used. An automatic setup of a freshly installed PostgreSQL instance can be done using
this script. The database connection can be configured in the database configuration file. (normally
the [production] section is relevant). More info about the dsn value format can be found in the
DBD::Pg documentation.

12.4.1. Example for connecting to local PostgreSQL database

[production]
dsn = dbi:Pg:dbname=openqa

27

https://github.com/os-autoinst/openQA/blob/master/script/setup-db
https://metacpan.org/pod/DBD::Pg#DBI-Class-Methods

12.4.2. Example for connecting to remote PostgreSQL database

[production]
dsn = dbi:Pg:dbname=openqa;host=db.example.org
user = openqa
password = somepassword

12.5. User authentication
openQA supports three different authentication methods: OpenID (default), OAuth2 and Fake (for
development).

Use the auth section in the web UI configuration to configure the method:

[auth]
method name is case sensitive!
method = OpenID

Independently of method used, the first user that logs in (if there is no admin yet) will
automatically get administrator rights!

Note that only one authentication method and only one OpenID/OAuth2 provider can be configured
at a time. When changing the method/provider no users/permissions are lost. However, a new and
distinct user (with default permissions) will be created when logging in via a different
method/provider because there is no automatic mapping of identities across different
methods/providers.

For authentication to work correctly the clocks on workers and the web UI need to be in sync. The
best way to achieve that is to install a service that implements the time-sync target. Otherwise a
"timestamp mismatch" may be reported when clocks are too far apart.

12.5.1. OpenID

By default openQA uses OpenID with opensuse.org as OpenID provider. OpenID method has its own
openid section in the web UI configuration:

[auth]
method name is case sensitive!
method = OpenID

[openid]
base url for openid provider
provider = https://www.opensuse.org/openid/user/
enforce redirect back to https
httpsonly = 1

28

This method supports OpenID version up to 2.0.

12.5.2. OAuth2

An additional Mojolicious plugin is required to use this feature:

openSUSE
zypper in 'perl(Mojolicious::Plugin::OAuth2)'

Example for configuring OAuth2 with GitHub:

[auth]
method name is case sensitive!
method = OAuth2

[oauth2]
provider = github
key = mykey
secret = mysecret

In order to use GitHub for authorization, an "OAuth App" needs to be registered on GitHub. Use
…/login as callback URL. Afterwards the key and secret will be visible to the application owner(s).

As shown in the comments of the default configuration file, it is also possible to use different
providers.

12.5.3. Fake

For development purposes only! Fake authentication bypass any authentication and automatically
allow any login requests as 'Demo user' with administrator privileges and without password. To
ease worker testing, API key and secret is created (or updated) with validity of one day during login.
You can then use following as /etc/openqa/client.conf:

[auth]
method name is case sensitive!
method = Fake

[localhost]
key = 1234567890ABCDEF
secret = 1234567890ABCDEF

If you switch authentication method from Fake to any other, review your API keys! You may be
vulnerable for up to a day until Fake API key expires.

29

https://github.com/settings/applications/new

Chapter 13. Run the web UI
To start openQA and enable it to run on each boot call

systemctl enable --now postgresql
systemctl enable --now openqa-webui
systemctl enable --now openqa-scheduler
to use Apache as reverse proxy under openSUSE
systemctl enable apache2
systemctl restart apache2
to use Apache as reverse proxy under Fedora
for now this is necessary to allow Apache to connect to openQA
setsebool -P httpd_can_network_connect 1
systemctl enable httpd
systemctl restart httpd

The openQA web UI should be available on http://localhost/ now. To simply start openQA without
enabling it permanently one can simply use systemctl start instead.

13.1. Additional considerations for zero-downtime
upgrades
The main openQA web UI service (the openqa-webui-daemon script which is usually started via the
systemd unit openqa-webui.service) supports zero-downtime upgrades with the help of the
SO_REUSEPORT socket option.

A zero-downtime restart is triggered by sending SIGHUP to the script/service (which can be done by
reloading openqa-webui.service when using systemd which is also what the official rpm packaging
does on upgrades).

The use of SO_REUSEPORT can cause unintended connection failures which can be circumvented via
sysctl net.ipv4.tcp_migrate_req=1, see the according article on LWN.net. Note that there is no
corresponding setting for IPv6 but the setting for IPv4 seems to help with IPv6 connections as well.

30

http://localhost/
https://docs.mojolicious.org/Mojolicious/Guides/Cookbook#Zero-downtime-software-upgrades
https://lwn.net/Articles/542629
https://lwn.net/Articles/542629
https://lwn.net/Articles/542629
https://lwn.net/Articles/853637

Chapter 14. Run openQA workers
Workers are services running backends to perform the actual testing. The testing is commonly
performed by running virtual machines but depending on the specific backend configuration
different options exist.

It is possible to run openQA workers on the same machine as the web UI as well as on different
machines, even in different networks, for example instances in public cloud. The only requirement
is access to the web UI host over HTTP/HTTPS. For running tests based on virtual machines KVM
support is recommended.

The openQA worker is distributed as a separate package which be installed on multiple machines
while still using only one web UI.

If you are using SLE make sure to add the required repos first.

openSUSE
zypper in openQA-worker
Fedora
dnf install openqa-worker

To allow workers to access your instance, you need to log into openQA as operator and create a pair
of API key and secret. Once you are logged in, in the top right corner, is the user menu, follow the
link 'Manage API keys'. Click the 'Create' button to generate key and secret. There is also a script
available for creating an admin user and an API key+secret pair non-interactively,
/usr/share/openqa/script/create_admin, which can be useful for scripted deployments of openQA.
Copy and paste the key and secret into /etc/openqa/client.conf on the machine(s) where the
worker is installed. Make sure to put in a section reflecting your webserver URL. In the simplest
case, your client.conf may look like this:

[localhost]
key = 1234567890ABCDEF
secret = 1234567890ABCDEF

To start the workers you can use the provided systemd files via:

systemctl start openqa-worker@1

This will start worker number one. You can start as many workers as you need, you just need to
supply a different 'instance number' (the number after @).

You can also run workers manually from command line.

install -d -m 0755 -o _openqa-worker /var/lib/openqa/pool/X
sudo -u _openqa-worker /usr/share/openqa/script/worker --instance X

31

This will run a worker manually showing you debug output. If you haven’t installed 'os-autoinst'
from packages make sure to pass --isotovideo option to point to the checkout dir where isotovideo
is, not to /usr/lib! Otherwise it will have trouble finding its perl modules.

If you start openQA workers on a different machine than the web UI host make sure to have
synchronized clocks, for example using NTP, to prevent inconsistent test results.

32

Chapter 15. Where to now?
From this point on, you can refer to the Getting Started guide to fetch the tests cases and possibly
take a look at Test Developer Guide

33

Chapter 16. Advanced configuration

16.1. Cleanup
The automated cleanup is enabled and configured by default. Cleanup tasks are scheduled via
systemd timer units and run via openqa-gru.service. The configuration is done in the web UI
configuration file and various places within the web UI. If you want to tweak the cleanup to your
needs, have a look at the Cleanup of assets, results and other data section.

16.2. Setting up git support
If your tests and needles are stored in git, openQA can perform various operations:

• Automatically commit needles created in the web UI editor back to the repository

• Automatically update the repository when scheduling tests

• Update the server’s tests and needles from git repos specified in a job’s CASEDIR and NEEDLES_DIR
variables

• Attempt to have the web UI display the correct needles each job was executed with via
temporary git checkouts, based on its variables

By default, cloning based on CASEDIR and NEEDLES_DIR is enabled, but the other features are disabled.
To control these features, you can use these config settings:

[scm git]
git_auto_commit = yes|no|''
git_auto_clone = yes|no
git_auto_update = yes|no
checkout_needles_sha = yes|no

• git_auto_commit controls whether needles saved in the web UI editor are automatically
committed. For backwards compatibility, setting scm in the [global] section to 'git' also enables
this feature, if git_auto_commit is not set exactly to 'no' (its default value is the empty string '').

• git_auto_update controls automatic test/needle updating when scheduling tests.

• git_auto_clone controls the automatic cloning of repos referenced by CASEDIR and NEEDLES_DIR, at
job schedule time.

• checkout_needles_sha controls the feature whereby, when a job viewed in the web UI has
variables indicating the needles came from a specific git repository and ref, openQA will
attempt to clone that ref and display the needles from it.

16.2.1. Configuration of automatic needle commit feature

You may want to add some description to automatic commits coming from the web UI. You can do
so by setting your configuration in the repository (/var/lib/os-autoinst/needles/.git/config) to
some reasonable defaults such as:

34

[user]
 email = whatever@example.com
 name = openQA web UI

To enable automatic pushing of the repo as well, you need to add the following to the web UI
configuration:

[scm git]
do_push = yes

Depending on your setup, you might need to generate and propagate ssh keys for user 'geekotest' to
be able to push.

It might also be useful to rebase first. To enable that, add the remote to get the latest updates from
and the branch to rebase against to your openqa.ini:

[scm git]
update_remote = origin
update_branch = origin/master

If rebasing, it may be useful to perform a hard reset of the local repository to ensure that the rebase
will not fail. To enable that, add the following to your openqa.ini (along with the previous snippet):

[scm git]
do_cleanup = yes

If you clone the needle repository via HTTP, you can still make geekotest able to push via SSH with a
git configuration. For GitHub, it would look like this:

git config --global url."git@github.com:".pushInsteadOf https://github.com/

This way git push will automatically rewrite HTTP urls to SSH for every repository, even if it’s
already cloned.

Or put it in the ~/.gitconfig file manually:

[url "git@github.com:"]
 pushInsteadOf = https://github.com/

You can apply the same kind of thing for any other git hosting provider.

35

16.3. Referer settings to auto-mark important jobs
Automatic cleanup of old results (see GRU jobs) can sometimes render important tests useless. For
example bug report with link to openQA job which no longer exists. Job can be manually marked as
important to prevent quick cleanup or referer can be set so when job is accessed from particular
web page (for example bugzilla), this job is automatically labeled as linked and treated as
important.

List of recognized referrers is space separated list configured in the web UI configuration file:

[global]
recognized_referers = bugzilla.suse.com bugzilla.opensuse.org

16.4. Worker settings
Default behavior for all workers is to use the QEMU backend and connect to http://localhost. If
you want to change some of those options, you can do so in the worker configuration. For example
to point the workers to the FQDN of your host (needed if test cases need to access files of the host)
use the following setting:

[global]
HOST = http://openqa.example.com

Once you got workers running they should show up in the admin section of openQA in the workers
section as 'idle'. When you get so far, you have your own instance of openQA up and running and
all that is left is to set up some tests.

16.5. Further systemd units for the worker
The following information is partially openSUSE specific. The openQA-worker package provides
further systemd units:

• openqa-worker-plain@.service: standard worker service, this is the default and openqa-
worker@.service is just a symlink to this service

• openqa-worker-no-cleanup@.service: see enabling snapshots

• openqa-worker-auto-restart@.service: worker that restarts automatically after processing
assigned jobs

• openqa-worker-cacheservice/openqa-worker-cacheservice-minion: services for the asset cache

• openqa-worker.target

◦ Starts openqa-worker@.service (but no other worker units) when started.

▪ The number of started worker slots depends on the pool directories present under
/var/lib/openqa/pool. This information is determined via a systemd generator and can
be refreshed via systemctl daemon-reload.

36

http://localhost

◦ Stops openqa-worker-no-cleanup@.service and other units conflicting with openqa-
worker@.service when started.

◦ Stops/restarts all worker units when stopped/restarted.

◦ Is restarted automatically when the openQA-worker package is updated (unless
DISABLE_RESTART_ON_UPDATE="yes" is set in /etc/sysconfig/services).

• openqa-reload-worker-auto-restart@.path: allows to restart the worker service automatically on
configuration changes without interrupting jobs (see next section for details)

16.5.1. Stopping/restarting workers without interrupting currently running
jobs

It is possible to stop a worker as soon as it becomes idle and immediately if it is already idling by
sending SIGHUP to the worker process.

When the worker is setup to be always restarted (e.g. using a systemd unit with Restart=always like
openqa-worker-auto-restart@*.service) this leads to the worker being restarted without interrupting
currently running jobs. This can be useful to apply configuration changes and updates without
interfering ongoing testing. Example:

systemctl reload 'openqa-worker-auto-restart@*.service' # sends SIGHUP to worker

There is also the systemd unit openqa-reload-worker-auto-restart@.path which invokes the
command above (for the specified slot) whenever the worker configuration under
/etc/openqa/workers.ini changes. This unit is not enabled by default and only affects openqa-worker-
auto-restart@.service but not other worker services.

This kind of setup makes it easy to take out worker slots temporarily without interrupting currently
running jobs:

prevent worker services from restarting and being automatically reloaded
systemctl stop openqa-reload-worker-auto-restart@{1..28}.{service,path}
systemctl mask openqa-worker-auto-restart@{1..28}.service
ensure idling worker services stop now (`--kill-who=main` ensures only the
worker receives the signal and *not* isotovideo)
systemctl kill --kill-who=main --signal HUP openqa-worker-auto-restart@{1..28}

16.6. Configuring remote workers
There are some additional requirements to get remote worker running. First is to ensure shared
storage between openQA web UI and workers. Directory /var/lib/openqa/share contains all
required data and should be shared with read-write access across all nodes present in openQA
cluster. This step is intentionally left on system administrator to choose proper shared storage for
her specific needs.

Example of NFS configuration: NFS server is where openQA web UI is running. Content of
/etc/exports

37

/var/lib/openqa/share *(fsid=0,rw,no_root_squash,sync,no_subtree_check)

NFS clients are where openQA workers are running. Run following command:

mount -t nfs openQA-webUI-host:/var/lib/openqa/share /var/lib/openqa/share

16.7. Configuring AMQP message emission
You can configure openQA to send events (new comments, tests finished, …) to an AMQP message
bus. The messages consist of a topic and a body. The body contains json encoded info about the
event. See amqp_infra.md for more info about the server and the message topic format. There you
will find instructions how to configure the AMQP server as well.

To let openQA send messages to an AMQP message bus, first make sure that the perl-Mojo-RabbitMQ-
Client RPM is installed. Then you will need to configure AMQP in the web UI configuration file:

Enable the AMQP plugin
[global]
plugins = AMQP

Configuration for AMQP plugin
[amqp]
heartbeat_timeout = 60
reconnect_timeout = 5
guest/guest is the default anonymous user/pass for RabbitMQ
url = amqp://guest:guest@localhost:5672/
exchange = pubsub
topic_prefix = suse

For a TLS connection use amqps:// and port 5671.

16.8. Configuring worker to use more than one openQA
server
When there are multiple openQA web interfaces (openQA instances) available a worker can be
configured to register and accept jobs from all of them.

Requirements:

• /etc/openqa/client.conf must contain API keys and secrets to all instances

• Shared storage from all instances must be properly mounted

In the worker configuration, enter space-separated instance hosts and optionally configure where
the shared storage is mounted. Example:

38

https://github.com/openSUSE/suse_msg/blob/master/amqp_infra.md

[global]
HOST = openqa.opensuse.org openqa.fedora.fedoraproject.org

[openqa.opensuse.org]
SHARE_DIRECTORY = /var/lib/openqa/opensuse

[openqa.fedoraproject.org]
SHARE_DIRECTORY = /var/lib/openqa/fedora

Configuring SHARE_DIRECTORY is not a hard requirement. Workers will try following directories prior
registering with openQA instance:

1. SHARE_DIRECTORY

2. /var/lib/openqa/$instance_host

3. /var/lib/openqa/share

4. /var/lib/openqa

5. fail if none of above is available

Once a worker registers to an openQA instance, scheduled jobs (of matching worker class) can be
assigned to it. Dependencies between jobs will be considered for ordering the job assignment. It is
possible to mix local openQA instance with remote instances or use only remote instances.

16.9. Asset and test/needle caching
If your network is slow or you experience long time to load needles you might want to consider
enabling caching on your remote workers. To enable caching, CACHEDIRECTORY must be set in the
worker configuration. There are also further settings one can optionally configure. Example:

[global]
HOST = http://webui
CACHEDIRECTORY = /var/lib/openqa/cache # desired cache location
CACHELIMIT = 50 # max. cache size in GiB, defaults to 50
CACHE_MIN_FREE_PERCENTAGE = 10 # min. free disk space to preserve in percent
CACHEWORKERS = 5 # number of parallel cache minion workers, defaults to 5

[http://webui]
TESTPOOLSERVER = rsync://yourlocation/tests # also cache tests (via rsync)

The specified CACHEDIRECTORY must exist and must be writable by the cache service (which usually
runs as _openqa-worker user). If you install openQA through the repositories, said directory will be
created for you.

The shown configuration causes workers to download the assets from the web UI and use them
locally. The TESTPOOLSERVER setting causes also tests and needles to be downloaded via rsync from
the specified location. You can find further examples in the comments in the worker configuration.

39

It is suggested to have the cache and pool directories on the same filesystem to ensure assets used
by tests are available as long as needed. This is achieved by using hard links, resorting to symlinks
in other cases with the risk of assets being deleted from the cache before tests relying on these
assets end.

The caching is provided by two additional services which need to be started on the worker host:

systemctl enable --now \
 openqa-worker-cacheservice openqa-worker-cacheservice-minion

The rsync server daemon needs to be configured and started on the web UI host.

Example /etc/rsyncd.conf:

gid = users
read only = true
use chroot = true
transfer logging = true
log format = %h %o %f %l %b
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
slp refresh = 300
use slp = false

[tests]
path = /var/lib/openqa/share/tests
comment = openQA test distributions

systemctl enable --now rsyncd

16.10. Alternative caching implementations
Caching described above works well for a single worker host, but in case of several hosts in a single
site (that is remote from the main openQA webui instance) it results in downloading the same
assets several times. In such case, one can setup local cache on their own (without using openqa-
worker-cacheservice service) and share it with workers using some network filesystem (see
[Configuring remote workers] section above). Such setups can use SYNC_ASSETS_HOOK in the web UI
configuration to ensure the cache is up to date before starting the job (or resuming test in developer
mode). The setting takes a shell command that is executed just before evaluating assets. It is up to
the system administrator to decide what it should do, but there are few suggestions:

• Call rsync, possibly via ssh on the cache host

• Wait for a lock file signaling that cache download is in progress to disappear

If the command exits with code 32, re-downloading needles in developer mode will be skipped.

40

16.11. Enable linking files referred by job settings
Specific job settings might refer to files within the test distribution. You can configure openQA to
display links to these files within the job settings tab. To enable particular settings to be presented
as a link within the settings tab one can setup the relevant keys in /etc/openqa/openqa.ini.

[job_settings_ui]
keys_to_render_as_links=FOO,AUTOYAST

The files referenced by the configured keys should be located either under the root of CASEDIR or the
data folder within CASEDIR.

16.12. Enable custom hook scripts on "job done" based
on result
If a job is done, especially if no label could be found for carry-over, often more steps are needed for
the review of the test result or providing the information to either external systems or users. As
there can be very custom requirements openQA offers a point for optional configuration to let the
instance administrators define specific actions.

By setting custom hooks it is possible to call external scripts defined in either environment
variables or config settings.

If an environment variable corresponding to the job result is found following the name pattern
OPENQA_JOB_DONE_HOOK_$RESULT, any executable specified in the variable as absolute path or
executable name in $PATH is called with the job ID as first and only parameter. For example for a job
with result "failed", the corresponding environment variable would be
OPENQA_JOB_DONE_HOOK_FAILED. As alternative to an environment variable a corresponding config
variable in the section [hooks] in lower-case without the OPENQA_ prefix can be used in the format
job_done_hook_$result. The corresponding environment value has precedence. The exit code of the
externally called script is not evaluated and will have no effect.

It is also possible to specify one general hook script via job_done_hook and enable that one for
specific results via e.g. job_done_hook_enable_failed = 1.

The job setting _TRIGGER_JOB_DONE_HOOK=0 allows to disable the hook script execution for a particular
job. It is also possible to specify _TRIGGER_JOB_DONE_HOOK=1 to execute the general hook script
configured via job_done_hook regardless of the result.

The execution time of the script is by default limited to five minutes. If the script does not terminate
after receiving SIGTERM for 30 seconds it is terminated forcefully via SIGKILL. One can change that by
setting the environment variables OPENQA_JOB_DONE_HOOK_TIMEOUT and
OPENQA_JOB_DONE_HOOK_KILL_TIMEOUT to the desired timeouts. The format from the timeout command
is used (see timeout --help).

For example there is already an approach called "auto-review" https://github.com/os-autoinst/
scripts/#auto-review---automatically-detect-known-issues-in-openqa-jobs-label-openqa-jobs-with-

41

https://github.com/os-autoinst/scripts/#auto-review---automatically-detect-known-issues-in-openqa-jobs-label-openqa-jobs-with-ticket-references-and-optionally-retrigger
https://github.com/os-autoinst/scripts/#auto-review---automatically-detect-known-issues-in-openqa-jobs-label-openqa-jobs-with-ticket-references-and-optionally-retrigger

ticket-references-and-optionally-retrigger which offers helpful, external scripts. Config settings for
openqa.opensuse.org enabling the auto-review scripts could look like:

[hooks]
job_done_hook_incomplete = /opt/openqa-scripts/openqa-label-known-issues-hook
job_done_hook_failed = /opt/openqa-scripts/openqa-label-known-issues-hook

or for a host openqa.example.com:

[hooks]
job_done_hook_incomplete = env host=openqa.example.com /opt/openqa-scripts/openqa-
label-known-issues-hook
job_done_hook_failed = env host=openqa.example.com /opt/openqa-scripts/openqa-label-
known-issues-hook

The environment variable should be set in a systemd service override for the GRU service. A
corresponding systemd override file /etc/systemd/system/openqa-gru.service.d/override.conf could
look like this:

[Service]
Environment="OPENQA_JOB_DONE_HOOK_INCOMPLETE=/opt/os-autoinst-scripts/openqa-label-
known-issues-hook"

When using apparmor the called hook scripts must be covered by according apparmor rules, for
example for the above in /etc/apparmor.d/usr.share.openqa.script.openqa:

 /opt/os-autoinst-scripts/** rix,
 /usr/bin/cat rix,
 /usr/bin/curl rix,
 /usr/bin/jq rix,
 /usr/bin/mktemp rix,
 /usr/share/openqa/script/client rix,

Additions should be added to /etc/apparmor.d/local/usr.share.openqa.script.openqa after which
the apparmor service needs to be restarted for changes to take effect. Note that in case of symlinks
the target must be specified, and the link itself is irrelevant. So for example Can’t exec "/bin/sh"
can occur if /bin/sh is a link to a path that’s not allowed.

Apparmor denials and stderr output of the hook scripts are visible in the system logs of the openQA
GRU service, except for messages in "complain" mode which end up in audit.log. General status
and stdout output is visible in the GRU minion job dashboard on the route
/minion/jobs?offset=0&task=finalize_job_results of the openQA instance.

42

https://github.com/os-autoinst/scripts/#auto-review---automatically-detect-known-issues-in-openqa-jobs-label-openqa-jobs-with-ticket-references-and-optionally-retrigger

16.13. Automatic cloning of incomplete jobs
By default, when a worker reports an incomplete job due to a cache service related problem, the job
is automatically cloned. It is possible to extend the regex to cover other types of incompletes as well
by adjusting auto_clone_regex in the global section of the config file. It is also possible to assign 0 to
prevent the automatic cloning.

Note that jobs marked as incomplete by the stale job detection are not affected by this configuration
and cloned in any case.

16.14. Enable automatic database backup
An optional systemd service, openqa-dump-db.service, can be enabled to perform daily database
backups. This service is triggered by the openqa-dump-db.timer. To enable automatic database
backup, run:

systemctl enable --now openqa-dump-db.timer

Backups are stored at /var/lib/openqa/backup.

43

Chapter 17. Auditing - tracking openQA
changes
Auditing plugin enables openQA administrators to maintain overview about what is happening
with the system. Plugin records what event was triggered by whom, when and what the request
looked like. Actions done by openQA workers are tracked under user whose API keys are workers
using.

Audit log is directly accessible from Admin menu.

Auditing, by default enabled, can be disabled by global configuration option in the web UI
configuration file:

[global]
audit_enabled = 0

The audit section of the web UI configuration allows to exclude some events from logging using a
space separated blocklist:

[audit]
blocklist = job_grab job_done

The audit/storage_duration section of the web UI configuration allows to set the retention policy for
different audit event types:

[audit/storage_duration]
startup = 10
jobgroup = 365
jobtemplate = 365
table = 365
iso = 60
user = 60
asset = 30
needle = 30
other = 15

In this example events of the type startup would be cleaned up after 10 days, events related to job
groups after 365 days and so on. Events which do not fall into one of these categories would be
cleaned after 15 days. By default, cleanup is disabled.

Use systemctl enable --now openqa-enqueue-audit-event-cleanup.timer to schedule the cleanup
automatically every day. It is also possible to trigger the cleanup manually by invoking
/usr/share/openqa/script/openqa minion job -e limit_audit_events.

44

17.1. List of events tracked by the auditing plugin
• Assets:

◦ asset_register asset_delete

• Workers:

◦ worker_register command_enqueue

• Jobs:

◦ iso_create iso_delete iso_cancel

◦ jobtemplate_create jobtemplate_delete

◦ job_create job_grab job_delete job_update_result job_done jobs_restart job_restart
job_cancel job_duplicate

◦ jobgroup_create jobgroup_connect

• Tables:

◦ table_create table_update table_delete

• Users:

◦ user_update user_login user_deleted

• Comments:

◦ comment_create comment_update comment_delete

• Needles:

◦ needle_delete needle_modify

Some of these events are very common and may clutter audit database. For this reason job_grab
and job_done events are on the blocklist by default.

45

Chapter 18. Automatic system upgrades and
reboots of openQA hosts
The distribution package openQA-auto-update offers automatic system upgrades and reboots of
openQA hosts. To use that feature install the package openQA-auto-update and enable the
corresponding systemd timer:

systemctl enable openqa-auto-update.timer

This triggers a nightly system upgrade which first looks into configured openQA repositories for
stable packages, then conducts the upgrade and schedules reboots during the configured reboot
maintenance windows using rebootmgr. As an alternative to the systemd timer the script
/usr/share/openqa/script/openqa-auto-update can be called when desired. The script also supports
cache cleanup preserving a certain number of versions per package. Check its helptext for details.

The distribution package openQA-continuous-update can be used to continuously upgrade the system.
It will frequently check whether devel:openQA contains updates and if it does it will upgrade the
whole system. This approach is independent of openQA-auto-update but can be used complementary.
The configuration is analogous to openQA-auto-update.

46

Chapter 19. Migrating from older databases
For older versions of openQA, you can migrate from SQLite to PostgreSQL according to DB
migration from SQLite to PostgreSQL.

For migrating from older PostgreSQL versions read on.

47

Chapter 20. Migrating PostgreSQL database
on openSUSE
The PostgreSQL data-directory needs to be migrated in order to switch to a newer major version of
PostgreSQL. The following instructions are specific to openSUSE’s PostgreSQL and openQA
packaging but with a little adaption they can likely be used for other setups as well. These
instructions can migrate big databases in seconds without requiring additional disk space.
However, services need to be stopped during the (short) migration.

1. Locate the data-directory. Its path is configured in /etc/sysconfig/postgresql and should be
/var/lib/pgsql/data by default. The paths in the next steps assume the default.

2. To ease migrations, it is recommended making the data-directory a symlink to a versioned
directory. So the file system layout would look for example like this:

$ sudo -u postgres ls -l /var/lib/pgsql | grep data
lrwxrwxrwx 1 root root 7 8. Sep 2019 data -> data.10
drwx------ 20 postgres postgres 4096 30. Aug 00:00 data.10
drwx------ 20 postgres postgres 4096 8. Sep 2019 data.96

The next steps assume such a layout.

3. Install same set of postgresql* packages as are installed for the old version:

oldver=10 newver=12
sudo zypper in postgresql$newver-server postgresql$newver-contrib

4. Change to a directory where the user postgres will be able to write logs to, e.g.:

cd /tmp

5. Prepare the migration:

sudo -u postgres /usr/lib/postgresql$newver/bin/initdb [locale-settings] -D
/var/lib/pgsql/data.$newver

IMPORTANT
Be sure to use initdb from the target version (like it is done here) and also
no newer version which is possibly installed on the system as well.

48

IMPORTANT

Lookup the locale settings in
/var/lib/pgsql/data.$oldver/postgresql.conf or via sudo -u geekotest
psql openqa -c 'show all;' | grep lc_ to pass locale settings listed by
initdb --help as appropriate. On some machines additional settings need
to be supplied, e.g. from an older database version on
openqa.opensuse.org it was necessary to pass the following settings:
--encoding=UTF8 --locale=en_US.UTF-8 --lc-collate=C --lc
-ctype=en_US.UTF-8 --lc-messages=C --lc-monetary=C --lc-numeric=C
--lc-time=C

6. Take over any relevant changes from the old config to the new one, e.g.:

sudo -u postgres vimdiff \
 /var/lib/pgsql/data.$oldver/postgresql.conf \
 /var/lib/pgsql/data.$newver/postgresql.conf

IMPORTANT
There shouldn’t be a diff in the locale settings, otherwise pg_upgrade will
complain.

7. Shutdown postgres server and related services as appropriate for your setup, e.g.:

sudo systemctl stop openqa-{webui,websockets,scheduler,livehandler,gru}
sudo systemctl stop postgresql

8. Perform the migration:

sudo -u postgres /usr/lib/postgresql$newver/bin/pg_upgrade --link \
 --old-bindir=/usr/lib/postgresql$oldver/bin \
 --new-bindir=/usr/lib/postgresql$newver/bin \
 --old-datadir=/var/lib/pgsql/data.$oldver \
 --new-datadir=/var/lib/pgsql/data.$newver

IMPORTANT
Be sure to use pg_upgrade from the target version (like it is done here)
and also no newer version which is possibly installed on the system as
well. Checkout the PostgreSQL documentation for details.

NOTE
This step only takes a few seconds for multiple production DBs because the
--link option is used.

9. Change symlink (shown in step 2) to use the new data directory:

sudo ln --force --no-dereference --relative --symbolic /var/lib/pgsql/data.$newver
/var/lib/pgsql/data

49

https://www.postgresql.org/docs/current/pgupgrade.html

10. Start services again as appropriate for your setup, e.g.:

sudo systemctl start postgresql
sudo systemctl start openqa-{webui,websockets,scheduler,livehandler,gru}

NOTE
There is no need to take care of starting the new version of the PostgreSQL
service. The start script checks the version of the data directory and starts the
correct version.

11. Check whether usual role and database are present and running on the new version:

sudo -u geekotest psql -c 'select version();' openqa

12. Remove old postgres packages if not needed anymore:

sudo zypper rm postgresql$oldver-server postgresql$oldver-contrib postgresql$oldver

13. Delete the old data directory if not needed anymore:

sudo -u postgres rm -r /var/lib/pgsql/data.$oldver

50

Chapter 21. Working on database-related
performance problems
Without extra setup, PostgreSQL already gathers many statistics, checkout the official
documentation.

21.1. Enable further statistics
These statistics help to identify the most time-consuming queries.

1. Configure the PostgreSQL extension pg_stat_statements, see example on the official
documentation.

2. Ensure the extension library is installed which might be provided by a separate package (e.g.
postgresql14-contrib for PostgreSQL 14 on openSUSE).

3. Restart PostgreSQL.

4. Enable the extension via CREATE EXTENSION pg_stat_statements.

21.1.1. Make use of these statistics

Simply query the table pg_stat_statements. Use \x in psql for extended mode or substring() on the
query parameter for readable output. The columns are explained in the previously mentioned
documentation. Here an example to show similar queries which are most time-consuming:

SELECT
 substring(query from 0 for 250) as query_start, sum(calls) as calls,
max(max_exec_time) as max_exec_time,
 sum(total_exec_time) as total_exec_time, sum(rows) as rows
 FROM pg_stat_statements group by query_start ORDER BY total_exec_time DESC LIMIT 10;

After significant schema changes consider resetting query statistics (SELECT
pg_stat_statement_reset()) and checking the query plans (EXPLAIN (ANALYZE, BUFFERS) …) for the
slowest queries showing up afterwards to make sure they are using indexes (and not just sequential
scans).

21.2. Further things to try
1. Try to tweak database configuration parameters. For example increasing work_mem in

postgresql.conf might help with some heavy queries.

2. Run VACUUM VERBOSE ANALYZE table_name; for any table that shows to be impacting the
performance. This can take some seconds or minutes but can help to improve performance in
particular after bigger schema migrations for example type changes.

51

https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/monitoring-stats.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/pgstatstatements.html

21.3. Further resources
• Checkout the official documentation for more details about EXPLAIN. There is also service for

formatting those explanations to be more readable.

• Checkout the official documentation for more details about VACUUM ANALYZE.

• Checkout the following documentation pages.

52

https://www.postgresql.org/docs/current/sql-explain.html
https://explain.depesz.com
https://www.postgresql.org/docs/current/sql-vacuum.html
https://www.postgresql.org/docs/current/performance-tips.html

Chapter 22. Filesystem layout
Tests, needles, assets, results and working directories (a.k.a. "pool directories") are located in
certain subdirectories within /var/lib/openqa. This directory is configurable (see Customize base
directory). Here we assume the default is in place.

Note that the sub directories within /var/lib/openqa must be accessible by the user that runs the
openQA web UI (by default 'geekotest') or by the user that runs the worker/isotovideo (by default
'_openqa-worker').

These are the most important sub directories within /var/lib/openqa:

• db contains the web UI’s database lockfile

• images is where the web UI stores test screenshots and thumbnails

• testresults is where the web UI stores test logs and test-generated assets

• webui is where the web UI stores miscellaneous files

• pool contains working directories of the workers/isotovideo

• share contains directories shared between the web UI and (remote) workers, can be owned by
root

• share/factory contains test assets and temp directory, can be owned by root but sysadmin must
create subdirs

• share/factory/iso and share/factory/iso/fixed contain ISOs for tests

• share/factory/hdd and share/factory/hdd/fixed contain hard disk images for tests

• share/factory/repo and share/factory/repo/fixed contain repositories for tests

• share/factory/other and share/factory/other/fixed contain miscellaneous test assets (e.g.
kernels and initrds)

• share/factory/tmp is used as a temporary directory (openQA will create it if it owns
share/factory)

• share/tests contains the tests themselves

Each of the asset directories (factory/iso, factory/hdd, factory/repo and factory/other) may contain
a fixed/ subdirectory, and assets of the same type may be placed in that directory. Placing an asset
in the fixed/ subdirectory indicates that it should not be deleted to save space: the GRU task which
removes old assets when the size of all assets for a given job group is above a specified size will
ignore assets in the fixed/ subdirectories.

It also contains several symlinks which are necessary due to various things moving around over the
course of openQA’s development. All the symlinks can of course be owned by root:

• script (symlink to /usr/share/openqa/script/)

• tests (symlink to share/tests)

• factory (symlink to share/factory)

53

It is always best to use the canonical locations, not the compatibility symlinks - so run scripts from
/usr/share/openqa/script, not /var/lib/openqa/script.

You only need the asset directories for the asset types you will actually use, e.g. if none of your tests
refer to openQA-stored repositories, you will need no factory/repo directory. The distribution
packages may not create all asset directories, so make sure the ones you need are created if
necessary. Packages will likewise usually not contain any tests; you must create your own tests, or
use existing tests for some distribution or other piece of software.

The worker needs to own /var/lib/openqa/pool/$INSTANCE, e.g.

• /var/lib/openqa/pool/1

• /var/lib/openqa/pool/2

• … - add more if you have more worker instances

You can also give the whole pool directory to the _openqa-worker user and let the workers create
their own instance directories.

22.1. Terms and variables for certain directories used
by openQA and isotovideo

• the "base directory"

◦ by default /var/lib

◦ configurable via environment variable OPENQA_BASEDIR

◦ referred as $basedir within openQA

• the "project directory"

◦ defined as $basedir/openqa, by default /var/lib/openqa

◦ referred as $prjdir within openQA

• the "share directory": contains directories shared between web UI and (remote) workers

◦ defined as $prjdir/share, by default /var/lib/openqa/share

◦ referred as $sharedir within openQA

• the "test case directory": contains a test distribution

◦ by default $sharedir/tests/$distri or $sharedir/tests/$distri-$version

◦ configurable via the test variable CASEDIR (see backend variables documentation)

◦ this default is provided by openQA; when starting isotovideo manually the CASEDIR variable
must be initialized by hand

◦ might contain the sub directory lib for placing Perl modules used by the tests

• the "product directory": contains the test schedule (main.pm) for a certain product within a test
distribution

◦ by default identical to the "test case directory"

54

◦ usually a directory products/$distri within the "test case directory"

◦ configurable via the test variable PRODUCTDIR (see backend variables documentation)

• the "needles directory": contains reference images for a certain product within a test
distribution

◦ by default $PRODUCTDIR/needles

◦ configurable via the test variable NEEDLES_DIR (see backend variables documentation)

22.1.1. Further notes

• Setting the test variables has only an influence on os-autoinst. The web UI on the other hand
always relies on the directory structure described above. For the exact details how these paths
are computed by the web UI have a look at lib/OpenQA/Utils.pm.

• When enabling the worker cache parts of the usual "share directory" are located in the specified
cache directory on the worker host.

55

Chapter 23. Automatic installation of the
operating systems for openQA machines
As a maintainer of an openQA infrastructure running multiple openQA worker machines one likely
wants to use installation recipes for automatic installations to provide a consistent and easy setup
of new machines.

For this AutoYaST can be used. An example template that provides the bare basics of installing a
machine with SSH and salt, e.g. to be used with https://github.com/os-autoinst/salt-states-openqa/,
can be found in https://github.com/os-autoinst/openQA/blob/master/contrib/ay-openqa-worker.xml

56

https://doc.opensuse.org/projects/autoyast/
https://github.com/os-autoinst/salt-states-openqa/
https://github.com/os-autoinst/openQA/blob/master/contrib/ay-openqa-worker.xml

Chapter 24. Special network conditions
There might be certain situations where the openQA workers cannot reach the openQA webui
directly. In this case a reverse connection via SSH or WireGuard might be useful allowing the
openQA webui to connect to a worker opening a backchannel.

24.1. WireGuard
For WireGuard using wg-quick is recommended.

To generate a private (first line) and a public (second line) key for each peer use this command:

wg genkey | tee /dev/stderr | wg pubkey

Create a config in /etc/wireguard/openqa.conf on the webui host:

[Interface]
Address = fd0a::1/128
PrivateKey = +++ INSERT PRIVATE KEY of webui +++

[Peer]
Name = worker1
PublicKey = +++ INSERT PUBLIC KEY OF worker1 +++
Endpoint = worker1:51820
AllowedIPs = fd0a::2/128
PersistentKeepalive = 60

[Peer]
Name = worker2
PublicKey = +++ INSERT PUBLIC KEY OF worker2 +++
Endpoint = worker2:51820
AllowedIPs = fd0a::3/128
PersistentKeepalive = 60

Create a config in /etc/wireguard/openqa.conf on the worker1 host (and analog on other worker
hosts):

[Interface]
Address = fd0a::2/128
PrivateKey = +++ INSERT PRIVATE KEY HERE +++
ListenPort = 51820

[Peer]
Name = webui
PublicKey = +++ INSERT PUBLIC KEY OF webui +++
AllowedIPs = fd0a::1/128

57

On all peers run now:

zypper -n in wireguard-tools
systemctl enable --now wg-quick@openqa

Then update the worker configuration on the workers like this:

[global]
HOST=[fd0a::1]

[[fd0a::1]]
TESTPOOLSERVER = rsync://[fd0a::1]/tests

Same for /etc/openqa/client.conf

[[fd0a::1]]
key = FOO
secret = BAR

NOTE

The IPv6 address is written in square brackets as it is internally converted to a URL
which requires this notation. This is also the reason why host specific section
headers need to have double brackets (one for the ini format, one for the IPv6 host
notation).

58

Chapter 25. Troubleshooting

25.1. Tests fail quickly
Check the log files in /var/lib/openqa/testresults

25.2. KVM does not work
• make sure you have a machine with kvm support

• make sure kvm_intel or kvm_amd modules are loaded

• make sure you do have virtualization enabled in BIOS

• make sure the '_openqa-worker' user can access /dev/kvm

• make sure you are not already running other hypervisors such as VirtualBox

• when running inside a vm make sure nested virtualization is enabled (pass nested=1 to your
kvm module)

25.3. OpenID login times out
www.opensuse.org’s OpenID provider may have trouble with IPv6. openQA shows a message like
this:

no_identity_server: Could not determine ID provider from URL.

To avoid that switch off IPv6 or add a special route that prevents the system from trying to use IPv6
with www.opensuse.org:

ip -6 r a to unreachable 2620:113:8044:66:130:57:66:6/128

25.4. Performance testing
If openQA is very slow and e.g. the test setup times out because the asset caching downloads take
too long it makes sense to cross-check the networking performance. This can be done via iperf3.

Launch the server via iperf3 -s on one host (e.g. the openQA web UI host). Then run a test on
another host (e.g. an openQA worker host) like this:

iperf3 -c serverhost -i 1 -t 30 # 30 second tests, giving results every second

Use -4/-6 to check IPv4 vs. IPv6 performance. Use -R to check in the other direction. Both can make
a huge difference.

59

More examples: https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf

60

https://fasterdata.es.net/performance-testing/network-troubleshooting-tools/iperf

openQA users guide

61

Chapter 26. Introduction
This document provides additional information for use of the web interface or the REST API as well
as administration information. For administrators it is recommend to have read the Installation
Guide first to understand the structure of components as well as the configuration of an installed
instance.

62

Chapter 27. Using job templates to automate
jobs creation

27.1. The problem
When testing an operating system, especially when doing continuous testing, there is always a
certain combination of jobs, each one with its own settings, that needs to be run for every revision.
Those combinations can be different for different 'flavors' of the same revision, like running a
different set of jobs for each architecture or for the Full and the Lite versions. This combinational
problem can go one step further if openQA is being used for different kinds of tests, like running
some simple pre-integration tests for some snapshots combined with more comprehensive post-
integration tests for release candidates.

This section describes how an instance of openQA can be configured using the options in the admin
area to automatically create all the required jobs for each revision of your operating system that
needs to be tested. If you are starting from scratch, you should probably go through the following
order:

1. Define machines in 'Machines' menu

2. Define medium types (products) you have in 'Medium types' menu

3. Specify various collections of tests you want to run in the 'Test suites' menu

4. Define job groups in 'Job groups' menu for groups of tests

5. Select individual 'Job groups' and decide what combinations make sense and need to be tested

Machines, mediums, test suites and job templates can all set various configuration variables. The so
called job templates within the job groups define how the test suites, mediums and machines
should be combined in various ways to produce individual 'jobs'. All the variables from the test
suite, medium, machine and job template are combined and made available to the actual test code
run by the 'job', along with variables specified as part of the job creation request. Certain variables
also influence openQA’s and/or os-autoinst’s own behavior in terms of how it configures the
environment for the job. Variables that influence os-autoinst’s behavior are documented in the file
doc/backend_vars.asciidoc in the os-autoinst repository.

In openQA we can parameterize a test to describe for what product it will run and for what kind of
machines it will be executed. For example, a test suite kde can be run for any product that has the
KDE software stack installed, like openSUSE-DVD-x86_64 and openSUSE-NET-i586, and can be tested in
different x86-64 and i586 machines like 64bit, 64bit_USBBoot, 32bit. In this example we could have
the following test scenarios considering that the “x86_64” flavor is not compatible with the 32bit
machine:

• openSUSE-DVD-x86_64-kde-64bit

• openSUSE-DVD-x86_64-kde-64bit_USBBoot

• openSUSE-NET-i586-kde-64bit

• openSUSE-NET-i586-kde-64bit_USBBoot

63

• openSUSE-NET-i586-kde-32bit

For every test scenario we need to configure a different instance of the test backend, for example
os-autoinst, with a different set of parameters.

27.2. Machines
You need to have at least one machine set up to be able to run any tests. Those machines represent
virtual machine types that you want to test. To make tests actually happen, you have to have an
'openQA worker' connected that can fulfill those specifications.

• Name. User defined string - only needed for operator to identify the machine configuration.

• Backend. What backend should be used for this machine. Recommended value is qemu as it is
the most tested one, but other options (such as kvm2usb or vbox) are also possible.

• Variables Most machine variables influence os-autoinst’s behavior in terms of how the test
machine is set up. A few important examples:

◦ QEMUCPU can be 'qemu32' or 'qemu64' and specifies the architecture of the virtual CPU.

◦ QEMUCPUS is an integer that specifies the number of cores you wish for.

◦ LAPTOP if set to 1, QEMU will create a laptop profile.

◦ USBBOOT when set to 1, the image will be loaded through an emulated USB stick.

27.3. Medium Types (products)
A medium type (product) in openQA is a simple description without any concrete meaning. It
basically consists of a name and a set of variables that define or characterize this product in os-
autoinst.

Some example variables used by openSUSE are:

• ISO_MAXSIZE contains the maximum size of the product. There is a test that checks that the
current size of the product is less or equal than this variable.

• DVD if it is set to 1, this indicates that the medium is a DVD.

• LIVECD if it is set to 1, this indicates that the medium is a live image (can be a CD or USB)

• GNOME this variable, if it is set to 1, indicates that it is a GNOME only distribution.

• PROMO marks the promotional product.

• RESCUECD is set to 1 for rescue CD images.

27.4. Test Suites
A test suite consists of a name and a set of test variables that are used inside this particular test
together with an optional description. The test variables can be used to parameterize the actual test
code and influence the behaviour according to the settings.

Some sample variables used by openSUSE are:

64

• BTRFS if set, the file system will be BtrFS.

• DESKTOP possible values are 'kde' 'gnome' 'lxde' 'xfce' or 'textmode'. Used to indicate the desktop
selected by the user during the test.

• DOCRUN used for documentation tests.

• DUALBOOT dual boot testing, needs HDD_1 and HDDVERSION.

• ENCRYPT encrypt the home directory via YaST.

• HDDVERSION used together with HDD_1 to set the operating system previously installed on the
hard disk.

• INSTALLONLY only basic installation.

• INSTLANG installation language. Actually used only in documentation tests.

• LIVETEST the test is on a live medium, do not install the distribution.

• LVM select LVM volume manager.

• NICEVIDEO used for rendering a result video for use in show rooms, skipping ugly and boring
tests.

• NOAUTOLOGIN unmark autologin in YaST

• NUMDISKS total number of disks in QEMU.

• REBOOTAFTERINSTALL if set to 1, will reboot after the installation.

• SCREENSHOTINTERVAL used with NICEVIDEO to improve the video quality.

• SPLITUSR a YaST configuration option.

• TOGGLEHOME a YaST configuration option.

• UPGRADE upgrade testing, need HDD_1 and HDDVERSION.

• VIDEOMODE if the value is 'text', the installation will be done in text mode.

Some of the variables usually set in test suites that influence openQA and/or os-autoinst’s own
behavior are:

• HDDMODEL variable to set the HDD hardware model

• HDDSIZEGB hard disk size in GB. Used together with BtrFS variable

• HDD_1 path for the pre-created hard disk

• RAIDLEVEL RAID configuration variable

• QEMUVGA parameter to declare the video hardware configuration in QEMU

27.5. Job Groups
The job groups are the place where the actual test scenarios are defined by the selection of the
medium type, the test suite and machine together with a priority value.

The priority value is used in the scheduler to choose the next job. If multiple jobs are scheduled and
their requirements for running them are fulfilled the ones with a lower priority value are
triggered. The id is the second sorting key: Of two jobs with equal requirements and same priority

65

value the one with lower id is triggered first.

Job groups themselves can be created over the web UI as well as the REST API. Job groups can
optionally be nested into categories. The display order of job groups and categories can be
configured by drag-and-drop in the web UI.

The scenario definitions within the job groups can be created and configured by different means:

• A simple web UI wizard which is automatically shown for job groups when a new medium is
added to the job group.

• An intuitive table within the web UI for adding additional test scenarios to existing media
including the possibility to configure the priority values.

• The scripts openqa-load-templates and openqa-dump-templates to quickly dump and load the
configuration from custom plain-text dump format files using the REST API.

• Using declarative schedule definitions in the YAML format using REST API routes or an online-
editor within the web UI including a syntax checker.

27.6. Variable expansion
Any job setting can refer to another variable using this syntax: %NAME%. When the test job is created,
the string will be substituted with the value of the specified variable at that time.

The variable expansion applies to job settings defined in test suites, machines, products and job
templates. It also applies to job settings specified when creating a single set of jobs and to variables
specified in the worker config.

Consider this example where a variable is defined within a test suite:

PUBLISH_HDD_1 = %DISTRI%-%VERSION%-%ARCH%-%DESKTOP%.qcow2

It may expanded to this job setting:

PUBLISH_HDD_1 = opensuse-13.1-i586-kde.qcow2

NOTE

Variables from the worker config are not considered if such a variable is also
present in any of the other mentioned places. To give variable values from the
worker config precedence, use double percentage signs. Expansions by the worker
will not be shown in the "Settings" tab on the web UI. They are only present in
vars.json and worker-log.txt.

27.7. Variable precedence
It is possible to define the same variable in multiple places that would all be used for a single job -
for instance, you may have a variable defined in both a test suite and a product that appear in the
same job template. The precedence order for variables is as follows (from lowest to highest):

66

• Product

• Machine

• Test suite

• Job template

• API POST query parameters

That is, variable values set as part of the API request that triggers the jobs will 'win' over values set
at any of the other locations. In the special case of the BACKEND variable, if there is a MACHINE
specified, the BACKEND value for this machine defined in openQA has highest precedence.

If you need to override this precedence - for example, you want the value set in one particular test
suite to take precedence over a setting of the same value from the API request - you can add a
leading + to the variable name. For instance, if you set +VARIABLE = foo in a test suite, and passed
VARIABLE=bar in the API request, the test suite setting would 'win' and the value would be foo.

If the same variable is set with a + prefix in multiple places, the same precedence order described
above will apply to those settings.

Note that the WORKER_CLASS variable is not overridden in the way described above. Instead multiple
occurrences are combined.

67

Chapter 28. Use of the web interface
In general the web UI should be intuitive or self-explanatory. Look out for the little blue help icons
and click them for detailed help on specific sections.

Some pages use queries to select what should be shown. The query parameters are generated on
clickable links, for example starting from the index page or the group overview page clicking on
single builds. On the query pages there can be UI elements to control the parameters, for example
to look for more older builds or only show failed jobs or other settings. Additionally, the query
parameters can be tweaked by hand if you want to provide a link to specific views.

28.1. Description of test suites
Test suites can be described using API commands or the admin table for any operator using the web
UI.

Figure 2. Entering a test suite description in the admin table using the web interface:

If a description is defined, the name of the test suite on the tests overview page shows up as a link.
Clicking the link will show the description in a popup. The same syntax as for comments can be
used, that is Markdown with custom extensions such as shortened links to ticket systems.

Figure 3. popover in test overview with content as configured in the test suites database:

28.2. /tests/overview - Customizable test overview page
The overview page is configurable by the filter box. Also, some additional query parameters can be
provided which can be considered advanced or experimental. For example specifying no build will

68

resolve the latest build which matches the other parameters specified. Specifying no group will
show all jobs from all matching job groups. Also specifying multiple groups works, see the
following example.

Figure 4. The openQA test overview page showing multiple groups at once. The URL query parameters
specify the groupid parameter two times to resolve both the "opensuse" and "opensuse test" group.

Specifying multiple groups with no build will yield the result for the latest build of each group. This
can be useful to have a static URL for bookmarking.

28.3. Review badges
Based on comments in the individual job results for each build a certificate icon is shown on the
group overview page as well as the index page to indicate that every failure has been reviewed, e.g.

69

a bug reference or a test issue reason is stated:

28.3.1. Meaning of the different colors

• No icon is shown if at least one failure still need to be reviewed.

• The green tick icon shows up when there is no work to be done.

• The black certificate icon is shown if all review work has been done.

• The grey comment icon is shown if all failures have at least one comment.

(To simplify, checking for false-negatives is not considered here.)

28.4. Bug references, labels and flags

28.4.1. Bug references

It is possible to reference a bug by writing <bugtracker_shortname>#<bug_nr> in a comment, e.g.
bsc#1234. It is also possible to spell out the full URL, e.g. https://bugzilla.suse.com/show_bug.cgi?
id=1234 which will then be shortened automatically. A bug reference is rendered as link and a bug
icon is displayed for the job in various places as shown in the figure below. A comment containing a
bug reference will also be carried over to reduce manual review work. Refer to the Flags section
below for other ways to trigger automated comment carryover.

WARNING
If you want to reference a bug without making it count as a bug reference you
need to wrap it into a label (see subsequent section), e.g. label:bsc#1234.

Figure 5. Bug icon for job with bug reference on test result overview

All bug references are stored within the internal database of openQA. The status can be updated
using the /bugs API route with external tools. One can set the bug status this way which will then be

70

https://bugzilla.suse.com/show_bug.cgi?id=1234
https://bugzilla.suse.com/show_bug.cgi?id=1234

shown in the web UI, see the figure below.

Figure 6. Example for visualization of closed issues: The upside down icons in red visualize closed issues.

NOTE
Also GitHub pull requests and issues can be linked. Use the generic format
<marker>[<project/repo>]<id>, e.g. gh#os-autoinst/openQA#1234.

28.4.2. Labels

A comment can also contain labels. Use label:<keyword> where <keyword> can be any valid character
up to the next whitespace, e.g. false_positive. A label is rendered as yellow box. The keywords are
not defined within openQA itself. A valid list of keywords should be decided upon within each
project or environment of one openQA instance. If a job has a label a special icon will be shown
next to it in various places as shown in the figure below.

Figure 7. Label icon for job with a label on test result overview

NOTE
A label containing a bug reference will still be treated as a label, not a bugref. The
bugref will still be rendered as a link. That means no bug icon is shown and the
comment does not become subject to carry over.

Overwrite result of job

One special label format is available which allows to forcefully overwrite the result of an openQA
job using a convenient openQA comment. The expected format is
label:force_result:<new_result>[:<description>], for example label:force_result:failed or
label:force_result:softfailed:bsc#1234. For this command to be effective the according user needs
to have at least operator permissions.

71

https://github.com/os-autoinst/openQA/issues/1234

NOTE
force_result-labels are evaluated when when a comment is carried over. However,
the carry over will only happen when the comment also contains a bug reference
or flag:carryover.

28.4.3. Flags

Currently there is only one flag for job comments supported.

flag:carryover

Adding flag:carryover to a comment, will result in this comment being carried over to a new job
failing for the same reason, without a bugref required.

28.5. Distinguish product and test issues bugref gh#708
“progress.opensuse.org” is used to track test issues, bugzilla for product issues, at least for
SUSE/openSUSE. openQA bugrefs distinguish this and show corresponding icons

28.6. Build tagging

28.6.1. Tag builds with special comments on group overview

Based on comments on the group overview individual builds can be tagged. As 'build' by
themselves do not own any data the job group is used to store this information. A tag has a build to
link it to a build. It also has a type and an optional description. The type can later on be used to
distinguish tag types. Note that openQA does not define further tag types besides the important tag.
However, the user is free to choose any tag type as needed.

The generic format for tags is

tag:<build_id>:<type>[:<description>], e.g. tag:1234:important:Beta1.

The build_id should be set to the BUILD setting of the jobs (without the Build-prefix shown in
dashboard pages). It is also possible to include the VERSION setting which then needs to be
prepended and separated by a dash (e.g. tag:15-SP5-25.1:important:Alpha-202210-1 where 15-SP5 is
the VERSION and 25.1 the BUILD).

The more recent tag always wins. Tags specifying the VERSION as well win over generic tags.

72

https://github.com/os-autoinst/openQA/pull/708

A 'tag' icon is shown next to tagged builds together with the description on the group_overview
page. The index page does not show tags by default to prevent a potential performance regression.
Tags can be enabled on the index page using the corresponding option in the filter form at the
bottom of the page.

28.6.2. Keeping important builds

As builds can now be tagged we come up with the convention that the 'important' type - the only
one for now - is used to tag every job that corresponds to a build as 'important' and keep the logs
for these jobs longer so that we can always refer to the attached data, e.g. for milestone builds, final
releases, jobs for which long-lasting bug reports exist, etc.

28.7. Filtering test results and builds
At the top of the test results overview page is a form which allows filtering tests by result,
architecture and TODO-status. "TODO" means that tests still require review.

There is also a similar form at the bottom of the index page which allows filtering builds by group

73

and customizing the limits. Also the 'All tests' table allows filtering by the TODO-status.

28.8. Highlighting job dependencies in 'All tests' table
When hovering over the branch icon after the test name children of the job will be highlighted blue
and parents red. So far this only works for jobs displayed on the same page of the table.

28.9. Show previous results in test results page gh#538
On a tests result page there is a tab for “Next & previous results” showing the result of test runs in
the same scenario. This shows next and previous builds as well as test runs in the same build. This
way you can easily check and compare results from before including any comments, labels, bug
references (see next section). This helps to answer questions like “Is this a new issue”, “Is it
reproducible”, “has it been seen in before”, “how does the history look like”.

Querying the database for former test runs of the same scenario is a rather costly operation which
we do not want to do for multiple test results at once but only for each individual test result (1:1
relation). This is why this is done in each individual test result and not for a complete build.

Related issue: #10212

Screenshot of the feature:

74

https://github.com/os-autoinst/openQA/pull/538
https://progress.opensuse.org/issues/10212

28.10. Link to latest in scenario name gh#836
Find the always latest job in a scenario with the link after the scenario name in the tab “Next &
previous results” Screenshot:

28.11. Add `latest' query route gh#815
Should always refer to most recent job for the specified scenario.

• have the same link for test development, i.e. if one retriggers tests, the person has to always
update the URL. If there would be a static URL even the browser can be instructed to reload the
page automatically

• for linking to the always current execution of the last job within one scenario, e.g. to respond
faster to the standard question in bug reports “does this bug still happen?”

Examples:

• tests/latest?distri=opensuse&version=13.1&flavor=DVD&arch=x86_64&test=kde&machine=64bit

• tests/latest?flavor=DVD&arch=x86_64&test=kde

• tests/latest?test=foobar - this searches for the most recent job using test_suite `foobar'

75

https://github.com/os-autoinst/openQA/pull/836
https://github.com/os-autoinst/openQA/pull/815

covering all distri, version, flavor, arch, machines. To be more specific, add the other query
entries.

28.12. Allow group overview query by result gh#531
This allows e.g. to show only failed builds. Could be included like in http://lists.opensuse.org/
opensuse-factory/2016-02/msg00018.html for “known defects”.

Example: Add query parameters like …&result=failed&arch=x86_64 to show only failed for the single
architecture selected.

28.13. Add web UI controls to select more builds in
group_overview gh#804
The query parameter `limit_builds' allows to show more than the default 10 builds on demand. Just
like we have for configuring previous results, the current commit adds web UI selections to reload
the same page with higher number of builds on demand. For this, the limit of days is increased to
show more builds but still limited by the selected number.

Example screenshot:

28.14. More query parameters for configuring last
builds gh#575
By using advanced query parameters in the URLs you can configure the search for builds. Higher
numbers would yield more complex database queries but can be selected for special investigation
use cases with the advanced query parameters, e.g. if one wants to get an overview of a longer
history. This applies to both the index dashboard and group overview page.

Example to show up to three week old builds instead of the default two weeks with up to 20 builds
instead of up to 10 being the default for the group overview page:

76

https://github.com/os-autoinst/openQA/pull/531
http://lists.opensuse.org/opensuse-factory/2016-02/msg00018.html
http://lists.opensuse.org/opensuse-factory/2016-02/msg00018.html
https://github.com/os-autoinst/openQA/pull/804
https://github.com/os-autoinst/openQA/pull/575

http://openqa/group_overview/1?time_limit_days=21&limit_builds=20

28.15. Web UI controls to filter only tagged or all
builds gh#807
Using a new query parameter `only_tagged=[0|1]' the list can be filtered, e.g. show only tagged
(important) builds.

Example screenshot:

Related issue: #11052

28.16. Test result badges gh#5022
For each job result including the latest job result page, there is a corresponding route to get an SVG
status badge that can eg. be used to build a status dashboard or for showing the status within a
GitHub comment.

http://openqa/tests/123/badge
http://openqa/tests/latest/badge

There is an optional parameter 'show_build=1' that will prefix the status with the build number.

28.17. Carry over of bug references from previous jobs
in same scenario
Many test failures within the same scenario might be due to the same reason. To avoid human
reviewers having to add the same bug references again and again, bug references are carried over
from previous failures in the same scenario if a job fails. The same behaviour can be achieved by
adding flag:carryover to a comment. This idea is inspired by the Claim plugin for Jenkins.

NOTE
The carry-over feature works on test module level. Only if the same set of test
module as in a predecessor job fails the latest bug reference is carried over.

77

https://github.com/os-autoinst/openQA/pull/807
https://progress.opensuse.org/issues/11052
https://github.com/os-autoinst/openQA/pull/5022
https://wiki.jenkins-ci.org/display/JENKINS/Claim+plugin

NOTE
The lookup-depth is limited. The search for candidates will also stop early if too
many different kinds of failures were seen. Checkout the descriptions of the
relevant settings in the carry_over section of the web UI configuration for details.

NOTE
For an approach to add bug references based on a search expression found in the
job reason for incomplete jobs or job logs consider to Enable custom hook scripts on
"job done" based on result.

28.18. Pinning comments as group description
This is possible by adding the keyword pinned-description anywhere in a comment on the group
overview page. Then the comment will be shown at the top of the group overview page. However, it
only works as operator or admin.

28.19. Dark mode
A dark mode theme can be enabled via "Appearance" settings for all logged in users. It can either be
forced with the "dark mode" setting, or left to browser detection. Switching automatically between
light and dark mode is natively supported by most modern browsers and can also be controlled
manually via flags:

• On Firefox, go to about:preferences#general and search for "Website appearance".

• On Chrome, go to chrome://flags/ and search for "Dark mode".

For more information, see developer.mozilla.org/CSS/@media/prefers-color-scheme

28.20. Developer mode
The developer mode allows to:

• Create or update needles from assert_screen mismatches ("re-needling")

• Pause the test execution (at a certain module) for manual investigation of the SUT

It can be accessed via the "Live View" tab of a running test. Only registered users can take control
over tests. Basic instructions and buttons providing further information about the different options
are already contained on the web page itself. So I am not repeating that information here and
rather explain the overall workflow.

In case the developer mode in not working on your instance, try to follow the steps for debugging
the developer mode under 'Pitfalls'.

28.20.1. Workflow for creating or updating needles

1. In case a new needles should be created, add the corresponding assert_screen calls to your test.

2. Start the test with the assert_screen calls which are supposed to fail.

3. Select "assert_screen timeout" under "Pause on screen mismatch" and confirm.

78

https://developer.mozilla.org/en-US/docs/Web/CSS/@media/prefers-color-scheme

4. Wait until the test has paused. There is a button to skip the current timeout to speed this up.

5. A button for accessing the needle editor should occur. It may take a few seconds till it occurs
because the screenshots created so far need to be uploaded from the worker to the web UI. Of
course it is also possible to go back to the "Details" tab to create a new needle from any previous
screenshot/match available.

6. After creating the new needle, click the resume button to test whether it worked.

Steps 4. to 6. can be repeated for further needles without restarting the test.

28.21. Job group editor gh#2111
Scenarios are defined as part of a job group. The Edit job group button exposes the editor.

28.21.1. YAML job templates editor

Settings can be specified as a key/value pair for each scenario. There is no equivalent in the table
view so you need to migrate groups to use this feature.

Any settings specified on test suites, machines or products are also used and can still be modified
independently. However, the YAML document should be updated before renaming or deleting test
suites, products or machines used by it, otherwise that would create an inconsistent state.

Job groups can be updated through the YAML editor or the YAML-related REST API routes.

28.21.2. Deprecated: Table-based (pre-migration)

In old versions openQA had a table-based UI for defining job templates, listed in a table per
medium. Machines can be added by selecting the architecture column and picking a machine from
the list. Remove scenarios by removing all of their machines. Add new scenarios via the blue Plus
icon at the top of the table. Changes to the priority are applied immediately.

If job groups still exist showing the old mode, the Edit YAML button can be used to reveal the YAML
editor and migrate a group. After saving for the first time, the group can only be configured in
YAML. The table view will not be shown anymore.

Note that making a backup before migrating groups may be a good idea, for example using openqa-
dump-templates.

To migrate an old job group using the API the current schedule can be retrieved in YAML format
and sent back to save as a complete YAML document. For example for all job groups in the old
format:

79

https://github.com/os-autoinst/openQA/pull/2111

for i in $(ssh openqa.example.com "sudo -u geekotest psql --no-align --tuples-only
--command=\"select id from job_groups where template is null order by id;\" openqa") ;
do
 curl -s http://openqa.example.com/api/v1/job_templates_scheduling/$i | openqa-cli
api --host http://openqa.example.com -X POST job_templates_scheduling/$i
schema=JobTemplates-01.yaml template="$(cat -)"
done

Note that in some cases you might run into errors where old test suites or products have invalid
names which the old editor did not enforce:

Product names may not contain : or @ characters. Something like Server-DVD-Staging:A would
require replacing the : with eg. a -.

Test suites may not contain : or @ characters. A test suite such as ext4_uefi@staging would have
been allowed previously. The use of the @ as a suffix could be replaced with a - or if it is used for
variants of the same test suite with different settings, settings can be specified in YAML directly.

More generally the regular expression [A-Za-z0-9._*-]+ could be used to check if a name is allowed
for a product or test suite.

80

Chapter 29. Configuring job groups via
YAML documents
A new job group starts out empty, which in YAML means that the two mandatory sections are
present but contain nothing. This is what can be seen when editing a completely group, and what is
also the state to revert to before deleting a job group that is no longer useful:

products: {}
scenarios: {}

A job group is comprised of up to three main sections. products defines one or more mediums to
run the scenarios in the group. At least one needs to be specified to be able to run tests. Going by an
example of openSUSE 15.1 the name, distri, flavor and version could be written like so. Note that
the version is a string in single quotes.

products:
 opensuse-15.1-DVD-Updates-x86_64:
 distri: opensuse
 flavor: DVD-Updates
 version: '15.1'

To complete the job group at least one scenario has to be added. A scenario is a combination of a
test suite, a machine and an architecture. Scenarios must also be unique across job groups - trying
to add it to multiple job groups is an error. Case in point, textmode and gnome could be defined like
so:

scenarios:
 x86_64:
 opensuse-15.1-DVD-Updates-x86_64:
 - textmode
 - gnome:
 machine: uefi
 priority: 70
 settings:
 QEMUVGA: cirrus

29.1. Defaults
Now there are two scenarios for x86_64, one by giving just the name of the test suite and another
which has a machine, priority and settings. Both are allowed. However since at least one scenario
relies on defaults those need to be specified once in their own section:

81

defaults:
 x86_64:
 machine: 64bit
 priority: 50

The defaults section is only required whenever a scenario is not completely defined in-place. When
it is used, the available parameters are identical to those for a single scenario. For instance the
example could be amended to use settings and run every test suite for that architecture on several
machines by default.

defaults:
 x86_64:
 machine: [64bit, 32bit]
 priority: 50
 settings:
 FOO: '1'

Defaults are always overwritten by explicit parameters on scenarios. Further more, all settings can
be specified in YAML. Using this together with custom job template names, variants of a scenario
can even be specified when they would normally be considered duplicated:

scenarios:
 x86_64:
 opensuse-15.1-DVD-Updates-x86_64:
 - textmode
 - gnome:
 machine: uefi
 priority: 70
 settings:
 QEMUVGA: cirrus
 - gnome_staging:
 testsuite: gnome
 machine: [32bit, 64bit-staging]
 settings:
 FOO: '2'

29.2. YAML Aliases
Even more flexibility can be achieved by using aliases in YAML, or in other words reusing a
scenario by reference, such as to run the same scenarios in two different mediums. & is used to
define an anchor, while * is the alias referencing the anchor:

82

products:
 opensuse-15.1-DVD-Updates-x86_64:
 distri: opensuse
 flavor: DVD-Updates
 version: '15.1'
 opensuse-15.2-GNOME-Live-x86_64:
 distri: opensuse
 flavor: GNOME-Live
 version: '15.2'
scenarios:
 x86_64:
 opensuse-15.1-DVD-Updates-x86_64:
 - textmode
 - gnome: &gnome
 machine: uefi
 priority: 70
 settings:
 QEMUVGA: cirrus
 - gnome_staging: &gnome_staging
 testsuite: gnome
 machine: [32bit, 64bit-staging]
 settings:
 FOO: '2'
 opensuse-15.2-GNOME-Live-x86_64:
 - textmode
 - gnome: *gnome
 - gnome_staging: *gnome_staging

29.3. YAML Merge Keys
Also YAML Merge Keys are supported. This way you can reuse previously defined anchors and add
other values to it. Values in the merged alias will be overridden.

You can even merge more than one alias.

83

https://yaml.org/type/merge.html

products:
 opensuse-15.1-DVD-Updates-x86_64:
 distri: opensuse
 flavor: DVD-Updates
 version: '15.1'
 opensuse-15.2-GNOME-Live-x86_64:
 distri: opensuse
 flavor: GNOME-Live
 version: '15.2'
scenarios:
 x86_64:
 opensuse-15.1-DVD-Updates-x86_64:
 - textmode
 - gnome:
 machine: uefi
 priority: 70
 settings: &common1
 QEMUVGA: cirrus
 FOO: default foo
 - gnome:
 machine: [32bit, 64bit-staging]
 priority: 70
 settings: &common2
 QEMUVGA: cirrus
 FOO: default foo
 BAR: default bar
 - gnome_staging:
 testsuite: gnome
 machine: [32bit, 64bit-staging]
 settings:
 # Merge
 <<: *common1
 FOO: foo # overrides the value from the merge keys
 - gnome_staging:
 testsuite: gnome
 machine: [32bit, 64bit-staging]
 settings:
 # Merge
 <<: [*common1, *common2] # *common1 overrides *common2
 FOO: foo # overrides the value from the merge keys

29.4. General YAML documentation
The job templates are written in YAML 1.2. In YAML, strings usually do not have to be quoted,
except if it is a special value that would be loaded as a Boolean, NULL or Number. The following
table shows all special values (See the documentation for the default YAML 1.2 Core Schema for
more information).

84

https://yaml.org/spec/1.2/spec.html
https://yaml.org/spec/1.2/spec.html#id2804923

Type Special Values

bool true | True | TRUE | false | False | FALSE

int (Base 8) 0o7, 0o10, 0o755

Regular Expression: 0o [0-7]+

int (Base 10) 23, 42`, `0123`, `-314`

Regular Expression: `[-\]? [0-9]+

int (Base 16) 0xFF, 0xa, 0xc0ffee

Regular Expression: 0x [0-9a-fA-F]+

float (Number) 3.14, 3.14`, `-3.14`, `3.3e+3`, `3.3e3`, `.14`, `001.23`, `.3E-1`, `3e3`

Regular Expression: `[-\]? (\. [0-9]+ | [0-9]+ (\. [0-9]*)?) ([eE] [-
+]? [0-9]+)?

float (Infinity) .inf, .inf`, `-.inf`, `.Inf` etc.

Regular Expression: `[-]? \. (inf | Inf | INF)

float (Not a
number)

.nan, .NaN, .NAN

Regular Expression: \. (nan | NaN |NAN)

null null | Null | NULL | ~ | # empty

str everything else

Because we are using the Merge Keys feature, also the unquoted string << is special. If you need the
literal string << (for example as a value in the job settings), you have to quote it.

85

Chapter 30. Use of the REST API
openQA includes a client script which - depending on the distribution - is packaged independently
to allow interfacing with an existing openQA instance without needing to install openQA itself. Call
openqa-cli --help for help. The sub-commands provide further help, e.g. openqa-cli api --help
contains a lot of examples.

This section focuses on particular API use-cases. Checkout the openQA client section for further
information about the client itself, how authentication works and how plain curl can be used.

30.1. Finding tests
The following example lists all jobs within the job group with the ID 1 and the setting
BUILD=20210707 on openqa.opensuse.org:

curl -s "https://openqa.opensuse.org/api/v1/jobs?groupid=1&build=20210707" | jq

The tool jq is used for pretty-printing in this example but it is also useful for additional filtering (see
js’s tutorial).

However, openQA’s API provides many more filters on its own. These can be used by adding
additional query parameters, e.g.:

• ids/state/result: Return only jobs with matching ID/state/result. Multiple IDs/states/results can
be specified by repeating the parameter or by passing comma-separated values.

• distri/version/build/test/arch/machine /worker_class/iso/hdd_1: Return only jobs where the job
settings match the specified values like in the example above. Note that it is not possible to filter
by arbitrary job settings although this list might not be complete.

• groupid/group: Return only jobs within the job group with the specified ID/name like in the
example above. These parameters are mutually exclusive, groupid has precedence.

• latest=1: De-duplicates, so that for the same DISTRI, VERSION, BUILD, TEST, FLAVOR, ARCH and MACHINE
only the latest job is returned.

• limit/page: Limit the number of returned jobs and allow pagination, e.g. page=2&limit=10 would
only show results 11-20.

• modules/modules_result: Return only jobs which have a test module with the specified
name/result.

• before/after: Return only jobs with a job ID less/greater than the specified job ID.

• scope=current: Returns only jobs which have not been cloned yet.

• scope=relevant: Returns only jobs which have not been obsoleted yet and which have not been
cloned yet. Clones which are still pending do not count.

86

https://stedolan.github.io/jq/tutorial

30.1.1. Remarks

• All parameters can be combined with each other unless stated otherwise.

• When specifying the same parameter multiple times, only the last occurrence is taken into
account.

• All values are matched exactly, so e.g. group=openSUSE+Leap+15 returns only jobs within the group
openSUSE Leap 15 but not jobs from the group openSUSE Leap 15 ARM. This applies to parameters
for filtering job settings as well.

30.2. Triggering tests
Tests can be triggered over multiple ways, using openqa-clone-job, jobs post, isos post as well as
retriggering existing jobs or whole media over the web UI.

30.2.1. Cloning existing jobs - openqa-clone-job

If one wants to recreate an existing job from any publicly available openQA instance the script
openqa-clone-job can be used to copy the necessary settings and assets to another instance and
schedule the test. For the test to be executed it has to be ensured that matching resources can be
found, for example a worker with matching WORKER_CLASS must be registered. More details on
openqa-clone-job can be found in Writing Tests.

30.2.2. Spawning single new jobs - jobs post

Single jobs can be spawned using the jobs post API route. All necessary settings on a job must be
supplied in the API request. The "openQA client" has examples for this.

Further examples for advanced dependency handling

It is possible to spawn a single set of jobs using just one API call, e.g.:

openqa-cli api -X POST jobs TEST:0=first-job TEST:1=second-job _START_AFTER:1=0

The suffixes 0 and 1 are actually freely chosen and are merely used to specify which parameters
belong to which job and how they depend on each other.

This creates a job with TEST=first-job and one with TEST=second-job and the second job will be
started after the first. Of course other types of dependencies are possible as well (via _PARALLEL and
_START_DIRECTLY_AFTER). Note that this kind of call will return the resulting job ID for each suffix that
has been used, e.g.:

{"ids":{"0":2531,"1":2530}}

To use colons within a settings key, just add a trailing :, e.g.:

87

openqa-cli api -X POST jobs TEST=test KEY:WITH:COLONS:=example

30.2.3. Spawning multiple jobs based on templates - isos post

The most common way of spawning jobs on production instances is using the isos post API route.
Based on settings for media, job groups, machines and test suites jobs are triggered based on
template matching. These settings need to be defined before on the corresponding pages of the web
UI (accessible to operators from the user menu). The section on job templates already explains
details about these tables. Alternatively, these settings can be supplied via a YAML document.

Additionally to the necessary template matching parameters DISTRI, VERSION, FLAVOR and ARCH more
parameters can be specified. Those additional parameters will be added as jobs settings in all
triggered jobs.

The parameters MACHINE and TEST additionally act as filters and TEST supports multiple comma-
separated values. So adding e.g. TEST=foo,bar will only consider the test suites foo and bar.

There are also special parameters which only have an influence on the way the triggering itself is
done. These parameters all start with a leading underscore but are set as request parameters in the
same way as the other parameters.

The following scheduling parameters exist

_OBSOLETE Obsolete jobs in older builds with same DISTRI and
VERSION (The default behavior is not obsoleting). With
this option jobs which are currently pending, for
example scheduled or running, are cancelled when a
new medium is triggered.

_DEPRIORITIZEBUILD Setting this switch to '1' will deprioritize the unfinished
jobs of old builds, and it will obsolete the jobs once the
configurable limit of the priority value is reached.

_DEPRIORITIZE_LIMIT The configurable limit of priority value up to which jobs
should be deprioritized. Needs _DEPRIORITIZEBUILD.
Defaults to 100.

_ONLY_OBSOLETE_SAME_BUILD Only obsolete (or deprioritize) jobs for the same BUILD.
This is useful for cases where a new build appearing does
not necessarily mean existing jobs for earlier builds with
the same DISTRI and VERSION are no longer interesting,
but you still want to be able to re-submit jobs for a build
and have existing jobs for the exact same build obsoleted.
Needs _OBSOLETE.

88

_SKIP_CHAINED_DEPS Do not schedule parent test suites which are specified in
START_AFTER_TEST or START_DIRECTLY_AFTER_TEST.

_INCLUDE_CHILDREN Include children that would otherwise not be considered
when filtering test suites via the TEST parameter.

_GROUP Job templates not matching the given group name are
ignored. Does not affect obsoletion behavior.

_GROUP_ID Same as _GROUP but allows to specify the group directly by
ID.

_PRIORITY Sets the priority value for the new jobs (which otherwise
defaults to the priority of the job template)

__… All parameters starting with __ will not be added as job
settings. Those parameters can be used to store
additional information about the scheduled product
itself, e.g. the URL of a web page with more context.

Example for _DEPRIORITIZEBUILD and _DEPRIORITIZE_LIMIT.

openqa-cli api -X POST isos async=0 ISO=my_iso.iso DISTRI=my_distri \
 FLAVOR=sweet ARCH=my_arch VERSION=42 BUILD=1234 \
 _DEPRIORITIZEBUILD=1 _DEPRIORITIZE_LIMIT=120 \

NOTE By default scheduling products is done synchronously within the requests, corresponding to
the parameter async=0. Use async=1 to avoid possible timeouts by performing the task in
background. This is recommended on big instances but means that the results (and possible errors)
need to be polled via openqa-cli api isos/$scheduled_product_id.

Statistical investigation

In case issues appear sporadically and are therefore hard to reproduce it can help to trigger many
more jobs on a production instance to gather more data first, for example the failure ratio.

Example of triggering 50 jobs in a development group so that the result of passed/failed jobs is
counted by openQA itself on the corresponding overview page:

openqa-clone-job --skip-chained-deps --repeat=50 --within-instance \
https://openqa.opensuse.org 123456 BUILD=poo32242_investigation \
_GROUP="Test Development:openSUSE Tumbleweed"

To get an overview about the fail ratio and confidence interval of sporadically failing applications
you can also use a script like this.

89

https://github.com/okurz/scripts/blob/master/count_fail_ratio

Defining test scenarios in YAML

Instead of relying on the tables for machines, mediums/products, test suites and job templates of
the openQA instance, one can provide these definitions/settings also via a YAML document. This
YAML document could be specific to a certain test distribution and stored in the same repository as
those tests (making the versioning easier).

WARNING
This feature is still experimental and may change in an incompatible way in
future versions.

This YAML document can be specified via the scheduling parameter SCENARIO_DEFINITIONS_YAML:

openqa-cli api … -X POST isos --param-file SCENARIO_DEFINITIONS_YAML=/local/file.yaml
…

This command will upload the contents of the local file /local/file.yaml to a possibly remote
openQA instance. The YAML document will only be used within the scope of this particular API
request. No settings are stored/altered on the openQA instance.

If the YAML document already exists on the openQA host, you can also use
SCENARIO_DEFINITIONS_YAML_FILE which expects the file path of the YAML document on the openQA
host. One can also specify an HTTP/HTTPs URL via that variable when async=1 is used (see
Spawning multiple jobs based on templates - isos post for details). Then this file is downloaded by
the openQA host.

The YAML document itself should define at least one or more job templates:

job_templates:
 create_hdd:
 machine: 64bit
 settings:
 PUBLISH_HDD_1: 'example-%VERSION%-%ARCH%-%BUILD%@%MACHINE%.qcow2'
 boot_from_hdd:
 machine: 64bit
 settings:
 HDD_1: 'example-%VERSION%-%ARCH%-%BUILD%@%MACHINE%.qcow2'
 START_AFTER_TEST: 'create_hdd'
 WORKER_CLASS: 'job-specific-class'

This example would create two jobs. They will run in sequence. The first job will upload an HDD
image that will then be consumed by the second job.

Note that you can also specify products and machine settings. An example showing the full
structure can be found in the example distribution.

These definitions are used like their openQA-instance-wide counterparts (so continue reading the
next section for more details on job templates).

90

https://github.com/os-autoinst/os-autoinst-distri-example/blob/master/scenario-definitions.yaml

30.2.4. Remarks

When scheduling a single test (variable TEST is specified) attempts to obsolete/deprioritize are
prevented by default because this is likely not wanted. Use _FORCE_OBSOLETE or
_FORCE_DEPRIORITIZEBUILD to nevertheless obsolete/deprioritize all jobs with matching DISTRI,
VERSION, FLAVOR and ARCH.

30.3. Job template YAML
Job groups can be queried via the experimental REST API:

api/v1/experimental/job_templates_scheduling

The GET request will get the YAML for one or multiple groups while a POST request conversely
updates the YAML for a particular group.

Two scripts using these routes can be used to import and export YAML templates:

openqa-dump-templates --json --group test > test.json

openqa-load-templates test.json

91

Chapter 31. Asset handling
Multiple parameters exist to reference "assets" to be used by tests. "Assets" are essentially content
that is stored by the openQA web-UI and provided to the workers. Things that are typically assets
include the ISOs and other images that are tested, for example.

Some assets can also be produced by a job, sent back to the web-UI, and used by a later job (see
explanation of 'storing' and 'publishing' assets, below). Assets can also be seen in the web-UI and
downloaded directly (though there is a configuration option to hide some or all asset types from
public view in the web-UI).

Assets may be shared between the web-UI and the workers by having them literally use a shared
filesystem (this used to be the only option), or by having the workers download them from the
server when needed and cache them locally. Checkout the documentation about asset caching for
more on this.

31.1. Specifying assets required by a job
The following job settings are specifying that an asset is required by a job:

• ISO (type iso)

• ISO_n (type iso)

• HDD_n (type hdd)

• UEFI_PFLASH_VARS (type hdd) (in some cases, see below)

• REPO_n (type repo)

• ASSET_n (type other)

• KERNEL (type other)

• INITRD (type other)

Where you see e.g. ISO_n, that means ISO_1, ISO_2 etc. will all be treated as assets.

The values of the above parameters are expected to be the name of a file - or, in the case of REPO_n, a
directory - that exists under the path /var/lib/openqa/share/factory on the openQA web-UI. That
path has subdirectories for each of the asset types, and the file or directory must be in the correct
subdirectory, so e.g. the file for an asset HDD_1 must be under /var/lib/openqa/share/factory/hdd.
You may create a subdirectory called fixed for any asset type and place assets there (e.g. in
/var/lib/openqa/share/factory/hdd/fixed for hdd-type assets): this exempts them from the automatic
cleanup described in the section about asset cleanup. Non-fixed assets are always subject to the
cleanup.

UEFI_PFLASH_VARS is a special case: whether it is treated as an asset depends on the value. If the
value looks like an absolute path (starts with /), it will not be treated as an asset (and so the value
should be an absolute path for a file which exists on the relevant worker system(s)). Otherwise, it is
treated as an hdd-type asset. This allows tests to use a stock base image (like the ones provided by
edk2) for a simple case, but also allows a job to upload its image on completion - including any

92

changes made to the UEFI variables during the execution of the job - for use by a child job which
needs to inherit those changes.

You can also use special suffixes to the basic parameter forms to access some special handling for
assets.

The following suffixes exist:

_URL Before starting these jobs, try to download these assets into the
relevant asset directory of the openQA web-UI from trusted domains
specified in the web UI configuration file. For example
ISO_1_URL=http://trusted.com/foo.iso would, if trusted.com is set as a
trusted domain, cause openQA to download the file foo.iso to
/var/lib/openqa/share/factory/iso and set ISO_1=foo.iso. If you set
both ISO_1 and ISO_1_URL, the file pointed to by ISO_1_URL will be
downloaded and renamed to the name set as ISO_1.

_DECOMPRESS_URL Specify a compressed asset to be downloaded that will be
uncompressed by openQA. For e.g.
ISO_1_DECOMPRESS_URL=http://host/foo2.iso.xz will download the file
foo2.iso.xz, uncompress it to foo2.iso, store it in
/var/lib/openqa/share/factory/iso and set ISO_1=foo2.iso. Again, you
can also set ISO_1 to change the name the file will be downloaded and
uncompressed as.

31.2. Specifying assets created by a job
Jobs can upload assets to the web-UI so other jobs can used them as HDD_n and UEFI_PFLASH_VARS
assets as described in the previous section.

To declare an asset to be uploaded, you can use the job settings PUBLISH_HDD_n and
PUBLISH_PFLASH_VARS. For instance, if you specify PUBLISH_HDD_1=updated.qcow2, the HDD_1 disk image
as it exists at the end of the test will be uploaded back to the web-UI and stored under the name
updated.qcow2. Any other job can then specify HDD_1=updated.qcow2 to use this published image as its
HDD_1.

IMPORTANT

Assets that are already existing will be overridden. If the same asset is
uploaded by multiple jobs concurrently this will lead to file corruption. So be
sure to use unique names or use private assets as explained in the
subsection below.

NOTE
Note that assets are by default only uploaded if the job completes successfully. To
force publishing assets even in case of a failed job one can specify the
FORCE_PUBLISH_HDD_ variable.

NOTE
When using this mechanism you will often also want to use the variable expansion
mechanism.

93

31.2.1. Private assets

There is a mechanism to alter an asset’s file name automatically to associate it with the particular
job that produced it (currently, by prepending the job ID to the filename). To make use of it, use
STORE_HDD_n (instead of PUBLISH_HDD_n). Those assets can then be consumed by chained jobs. For
instance, if a parent job uploads an asset via STORE_HDD_1=somename.qcow2, its children can use it via
HDD_1=somename.qcow2 without having to worry about naming conflicts.

IMPORTANT
This only works if the jobs uploading and consuming jobs have a chained
dependency. For more on "chained" jobs, see the documentation of job
dependencies.

NOTE
Access to private assets is not protected. Theoretically, jobs outside the chain can
still access the asset by explicitly prepending the ID of the creating job.

94

Chapter 32. Cleanup of assets, results and
other data
The cleanup of assets, test results and certain other data is automated. That means openQA
removes assets, job results and other data automatically according to configurable limits.

All cleanup jobs run within the Minion job queue, normally provided by openqa-gru.service. The
dashboard for Minion jobs is accessible via the administrator menu in the web UI. Only one
cleanup job can run at the same time unless concurrent is set to 1 in the [cleanup] settings of the
web UI configuration. Many other cleanup-related settings can be found within the web UI
configuration as well, e.g. the […_limits] sections contain various tweaks and allow to change
certain defaults. Checkout the sub section Timers and triggers to learn more about how those jobs
are triggered.

The cleanup of assets and job results (and certain other data) is happening independently of each
other using different strategies and retention settings:

• The further sub sections provide an overall description of the asset cleanup strategy and how to
configure it.

• The Basic cleanup settings section explains how to configure retentions, covering the job result
cleanup as well. Also have a look at Build tagging which allows to keep certain jobs longer by
marking them as important.

• The Auditing section explains the cleanup of the audit log.

32.1. Cleanup strategy for assets
To find out whether an asset should be removed, openQA determines by which groups the asset is
used. If at least one job within a certain job group is using an asset, the asset is considered to be
used by that job group. If that job group is within a parent job group, the asset is considered part of
that parent job group.

So an asset can belong to multiple job groups or parent job groups. The assets table which is
accessible via the admin menu shows these groups for each asset and also the latest job.

While an asset might belong to multiple groups it is only accounted to the group with the highest
asset limit which has still enough room to hold that asset. That basically mean that an asset is never
counted twice.

If the size limit for assets of a group is exceeded, openQA will remove assets which belong to that
group:

• Assets belonging to old jobs are preferred.

• Assets belonging to jobs which are still scheduled or running are not considered.

• Assets which have been accounted to another group that has still space left are not considered.

Assets which do not belong to any group are removed after a configurable duration unless the files

95

are still being updated. Keep in mind that this behavior is also enabled on local instances and
affects all cloned jobs (unless cloned into a job group).

If an asset is just a symlink then only the symlink is cleaned up (but not the file or directory it
points to).

'Fixed' assets - those placed in the fixed subdirectory of the relevant asset directory - are counted
against the group size limit, but are never cleaned up. This is intended for things like base disk
images which must always be available for a test to work. Note that relative symlinks in the regular
assets directory that point into the fixed subdirectory are also preserved.

32.2. Configuring limit for assets within job groups
To configure the maximum size for the assets of a group, open 'Job groups' in the operators menu
and select a group. The size limit for assets can be configured under 'Edit job group properties'. It
also shows the size of assets which belong to that group and not to any other group.

The default size limit for job groups can be adjusted in the default_group_limits section of the
openQA config file.

32.3. Configuring limit for groupless assets
Assets not belonging to jobs within a group are deleted automatically after a certain number of
days. That duration can be adjusted by setting untracked_assets_storage_duration in the misc_limits
section of the openQA config to the desired number of days.

In less trivial cases where a common limit is not enough or certain assets need more fine-grained
control, patterns based on the filename can be used. The patterns are interpreted as Perl regular
expressions and if a pattern matches the basename of an asset the specified duration in days will be
used. In simple cases the pattern is just a match on a word.

Consider the following examples to specify custom limits that would match assets with the names
testrepo-latest and openSUSE-12.3-x86_64.iso.

[assets/storage_duration]
latest = 30
openSUSE.+x86_64 = 10

Note that modifications to the file will count against the limit, so if an asset was updated within the
timespan it will not be removed.

32.4. Timers and triggers
Cleanup can be triggered in different ways. One option is to use minion_task_triggers and specify
tasks via on_job_done. Another way to do that is to use the systemd timers openqa-enqueue-*-cleanup
to periodically run tasks. Both can be used separately or in combination.

96

The relevant Minion tasks are:

• limit_assets

• limit_audit_events

• limit_bugs

• limit_results_and_logs

• limit_screenshots

These are no-ops if a task is already running so they can safely be enqueued repeatedly. Note that
the tasks can still take considerable time computing what to delete, from seconds to minutes. The
tasks can be enabled in the corresponding config file section.

32.5. Disabling cleanup
By default the cleanup is enabled with systemd timers if available. To completely disable cleanup
make sure that no minion cleanup tasks are enabled over the config file and prevent individual or
all cleanup systemd timers, for example for the asset cleanup:

systemctl mask openqa-enqueue-asset-cleanup.timer

97

Chapter 33. CLI interface
Beside the daemon argument to run the actual web service the openQA startup script
/usr/share/openqa/script/openqa supports further arguments.

For a full list of those commands, just invoke /usr/share/openqa/script/openqa -h. This also works
for sub-commands(e.g. /usr/share/openqa/script/openqa minion -h,
/usr/share/openqa/script/openqa minion job -h).

Note that prefork is only supported for the main web service but not for other services like the live
view handler.

98

Chapter 34. Suggested workflow for test
review
If an openQA instance is only used by one or few individuals often no strict process needs to
defined how openQA tests should be reviewed and how individual results should be handled. If the
group of test reviewers grows openQA and the ecosystem around openQA offer some helpful
features and approaches.

In particular for a big user base it is important to formalize how decisions are made and how tasks
are delegated. For this structured comments on the openQA platform can be used. With a comment
on openQA in the right format one can make a decision, inform automatic tools at the same time as
other users and have a traceable documentation of the actions taken.

• In openQA parent job groups can be defined with multiple job groups. This allows to segment
tests for scopes of individual review teams. The parent job group overview pages as well as the
central index page of openQA show "bullet list" icons that bring you directly to a combined test
overview showing results from all sub groups. This allows to have queries ready like
https://openqa.opensuse.org/tests/overview?groupid=1&groupid=2&groupid=3 which show all
openQA test failures within the hierarchy of test results. This can be combined with the flag
"todo=1" (click the "TODO" checkbox in the filter box on test overview pages) to show only tests
that need review. Other combinations of queries are possible, e.g. https://openqa.opensuse.org/
tests/overview?build=my-build&todo=1 to show all test results that need review for build "my-
build"

• https://github.com/os-autoinst/openqa_review can be used to produce multiple different
generated reports, e.g. all tests that need review, tests that are linked to closed bugs, etc.

• Use auto-review to handle flaky issues and even automatically retrigger according tests

• In case of known sporadic issues that can not be fixed quickly consider automatic retries of jobs
http://open.qa/docs/#_automatic_retries_of_jobs

• In case of known non-sporadic test issues that can not be fixed quickly consider overwriting the
result of jobs http://open.qa/docs/#_overwrite_result_of_job

• To quickly label and – as desired - restart multiple jobs consider using the command line
application openqa-label-all. Call openqa-label-all --help to see all options.

• For the SUSE maintenance test workflows a "branding" specific approach is provided: In case of
needing to urgently release individual maintenance updates before test failures can be resolved
consider instructing qem-bot, the automation validating and approving release requests based
on openQA test results, to ignore individual job failures for specific incidents. See
https://progress.opensuse.org/issues/95479#Suggestions for the necessary comment format or
use the comment template from the openqa.suse.de comment edit window.

99

https://openqa.opensuse.org/tests/overview?groupid=1&groupid=2&groupid=3
https://openqa.opensuse.org/tests/overview?build=my-build&todo=1
https://openqa.opensuse.org/tests/overview?build=my-build&todo=1
https://github.com/os-autoinst/openqa_review
https://github.com/os-autoinst/scripts/blob/master/README.md#auto-review---automatically-detect-known-issues-in-openqa-jobs-label-openqa-jobs-with-ticket-references-and-optionally-retrigger
http://open.qa/docs/#_automatic_retries_of_jobs
http://open.qa/docs/#_overwrite_result_of_job
https://progress.opensuse.org/issues/95479#Suggestions

Chapter 35. Where to now?
For test developers it is recommended to continue with the Test Developer Guide.

100

openQA test developer guide

101

Chapter 36. Introduction
openQA is an automated test tool that makes it possible to test the whole installation process of an
operating system. It’s free software released under the GPLv2 license. The source code and
documentation are hosted in the os-autoinst organization on GitHub.

This document provides the information needed to start developing new tests for openQA or to
improve the existing ones. It’s assumed that the reader is already familiar with openQA and has
already read the Starter Guide, available at the official repository.

102

http://www.gnu.org/licenses/gpl-2.0.html
https://github.com/os-autoinst
https://github.com/os-autoinst/openQA

Chapter 37. Basic
This section explains the basic layout of an openQA test and the API available. Tests are written in
the Perl programming language. However there is support for the Python programming language
(through the Perl module Inline::Python).

Some basic but no in-depth knowledge of Perl or Python is needed. This document assumes that the
reader is already familiar with Perl or Python.

103

Chapter 38. Test API
os-autoinst provides the API for the test using the os-autoinst backend. Take a look at the test API
documentation for further information. Note that this test API is sometimes also referred to as an
openQA DSL, because in some contexts it can look like a domain specific language.

104

https://github.com/os-autoinst/os-autoinst/blob/master/testapi.pm
http://open.qa/api/testapi
http://open.qa/api/testapi

Chapter 39. How to write tests

39.1. Test module interface
An openQA test needs to implement at least the run subroutine containing the actual test code and
the test needs to be loaded in the distribution’s main.pm.

Here is an example in Perl:

use Mojo::Base "basetest";
use testapi;

sub run {
 # write in this block the code for your test.
}

• Note: Mojo::Base automatically enables: strict, warnings, utf8, perl5.16. See Mojo::Base
Description

And here is an example in Python:

from testapi import *

def run(self):
 # write in this block the code for your test.

There are more optional subroutines that can be defined to extend the behavior of a test. A test
must comply with the interface defined below. Please note that the subroutine marked with *1 are
optional.

Written in type-hinted python to indicate explicitly return types
def run(self): -> None
def test_flags(): -> dict # *1
def post_fail_hook(): -> None # *1
def pre_run_hook(): -> None # *1
def post_run_hook(): -> None # *1

39.1.1. run

Defines the actual steps to be performed during the module execution.

An example usage:

105

https://docs.mosjolicious.org/Mojo/Base#DESCRIPTION
https://docs.mosjolicious.org/Mojo/Base#DESCRIPTION

sub run {
 # wait for bootloader to appear
 # with a timeout explicitly lower than the default because
 # the bootloader screen will timeout itself
 assert_screen "bootloader", 15;

 # press enter to boot right away
 send_key "ret";

 # wait for the desktop to appear
 assert_screen "desktop", 300;
}

assert_screen & send_key are provided by os-autoinst.

39.1.2. test_flags

Specifies what should happen when test execution of the current test module is finished depending
on the result.

Each flag is defined with a hash key, the possible hash keys are:

• fatal: When set to 1 the whole test suite is aborted if the test module fails. The overall state is set
to failed.

• ignore_failure: When set to 1 and the test module fails, it will not affect the overall result at all.

• milestone: After this test succeeds, update the 'lastgood' snapshot of the SUT.

• no_rollback: Don’t roll back to the 'lastgood' snapshot of the SUT if the test module fails.

• always_rollback: Roll back to the 'lastgood' snapshot of the SUT even if test was successful.

See the example below for how to enable a test flag. Note that snapshots are only supported by the
QEMU backend. When using other backends fatal is therefore enabled by default. One can
explicitly set it to 0 to disable the behavior for all backends even though it is not possible to roll
back.

An example usage:

sub test_flags {
 return {fatal => 1};
}

39.1.3. pre_run_hook

It is called before the run function - mainly useful for a whole group of tests. It is useful to setup the
start point of the test.

An example usage:

106

https://github.com/os-autoinst/os-autoinst/blob/master/testapi.pm

sub pre_run_hook {
 # Make sure to begin the test in the root console.
 select_console 'root-console';
}

39.1.4. post_fail_hook

It is called after run failed. It is useful to upload log files or to determine the state of the machine.

An example usage:

sub post_fail_hook {
 # Take an screenshot when the test failed
 save_screenshot;
}

39.1.5. post_run_hook

It is called after run completes, regardless of its return value, but only if the run subroutine
completes without any exceptions.

An example usage:

sub post_run_hook {
 send_key 'ctrl-alt-f3';

 assert_script_run 'openqa-cli api experimental/search q=shutdown.pm' ;
}

39.2. Notes on the Python API
The Python integration that OpenQA offers through Inline::Python also allows the test modules to
import other Perl modules with the usage of the perl virtual package provided by Inline::Python.

Because of the way Inline::Python binds Perl functions to Python it is not possible to use keywords
arguments from Python to Perl functions. They must be passed as positional arguments, for
example "key", "value".

See the following snippet of Perl code

107

use x11utils;

[...] omitted for brevity

sub run {
 # [...] omitted for brevity

 # Start vncviewer - notice the named arguments
 x11_start_program('vncviewer :0',
 target_match => 'virtman-gnome_virt-install',
 match_timeout => 100
);
 # [...] omitted for brevity
}

versus the equivalent python code:

from testapi import *

[...] omitted for brevity

def run(self):
 perl.require('x11utils')

 # Start vncviewer - notice the named arguments passed as positional arguments
 # Formatted in pairs for better visibility.

 perl.x11utils.x11_start_program('vncviewer :0',
 'target_match', 'virtman-gnome_virt-install',
 'match_timeout', 100
)
 # [...] omitted for brevity

Additionally, Python tests do not support run_args. An error will be present when a Python test
detects the presence of run_args on schedule.

This is because of the way Inline::Python handles argument passing between Perl <→ Python,
references to complex Perl objects do not reach Python properly and they can’t be used.

39.3. Example Perl test modules
The following examples are short complete test modules written in Perl implementing the interface
described above.

39.3.1. Boot to desktop

Boots into desktop when pressing enter at the boot loader screen.

108

The following example is a basic test that assumes some live image that boots into the desktop
when pressing enter at the boot loader:

use Mojo::Base "basetest";
use testapi;

sub run {
 # wait for bootloader to appear
 # with a timeout explicitly lower than the default because
 # the bootloader screen will timeout itself
 assert_screen "bootloader", 15;

 # press enter to boot right away
 send_key "ret";

 # wait for the desktop to appear
 assert_screen "desktop", 300;
}

sub test_flags {
 return {fatal => 1};
}

39.3.2. Install software via zypper

Example: Console test that installs software from remote repository via zypper command

sub run {
 # change to root
 become_root;

 # output zypper repos to the serial
 script_run "zypper lr -d > /dev/$serialdev";

 # install xdelta and check that the installation was successful
 assert_script_run 'zypper --gpg-auto-import-keys -n in xdelta';

 # additionally write a custom string to serial port for later checking
 script_run "echo 'xdelta_installed' > /dev/$serialdev";

 # detecting whether 'xdelta_installed' appears in the serial within 200 seconds
 die "we could not see expected output" unless wait_serial "xdelta_installed", 200;

 # capture a screenshot and compare with needle 'test-zypper_in'
 assert_screen 'test-zypper_in';
}

109

39.3.3. Sample X11 Test

Example: Typical X11 test testing kate

sub run {
 # make sure kate was installed
 # if not ensure_installed will try to install it
 ensure_installed 'kate';

 # start kate
 x11_start_program 'kate';

 # check that kate execution succeeded
 assert_screen 'kate-welcome_window';

 # close kate's welcome window and wait for the window to disappear before
 # continuing
 wait_screen_change { send_key 'alt-c' };

 # typing a string in the editor window of kate
 type_string "If you can see this text kate is working.\n";

 # check the result
 assert_screen 'kate-text_shown';

 # quit kate
 send_key 'ctrl-q';

 # make sure kate was closed
 assert_screen 'desktop';
}

39.4. Example Python test modules
The following examples are short complete test modules written in Python implementing the
interface described above.

39.4.1. openQA web UI sample test

110

Example: Test for the openQA web UI written in Python

from testapi import *

def run(self):
 assert_screen('openqa-logged-in')
 assert_and_click('openqa-search')
 type_string('shutdown.pm')
 send_key('ret')
 assert_screen('openqa-search-results')

 # import further Perl-based libraries (besides `testapi`)
 perl.require('x11utils')

 # use imported Perl-based libraries; call Perl function that would be called via
"named arguments" in Perl
 # note: In Perl the call would have been: x11_start_program('flatpak run
com.obsproject.Studio', target_match => 'obsproject-wizard')
 #
 # See the explanation in the "Notes on the Python API" section.
 perl.x11utils.x11_start_program('flatpak run com.obsproject.Studio',
'target_match', 'obsproject-wizard')

def switch_to_root_console():
 send_key('ctrl-alt-f3')

def post_fail_hook(self):
 switch_to_root_console()
 assert_script_run('openqa-cli api experimental/search q=shutdown.pm')

def test_flags(self):
 return {'fatal': 1}

111

Chapter 40. Variables
Test case behavior can be controlled via variables. Some basic variables like DISTRI, VERSION, ARCH
are always set. Others like DESKTOP are defined by the 'Test suites' in the openQA web UI. Check the
existing tests at os-autoinst-distri-opensuse on GitHub for examples.

Variables are accessible via the get_var and check_var functions.

112

https://github.com/os-autoinst/os-autoinst-distri-opensuse

Chapter 41. Advanced test features

41.1. Changing timeouts
By default, tests are aborted after two hours by the worker. To change this limit, set the test variable
MAX_JOB_TIME to the desired number of seconds.

The download of assets, synchronization of tests and other setup tasks do not count into
MAX_JOB_TIME. However, the setup time is limited by default to one hour. This can be changed by
setting MAX_SETUP_TIME.

To save disk space, increasing MAX_JOB_TIME beyond the default will automatically disable the video
by adding NOVIDEO=1 to the test settings. This can be prevented by adding NOVIDEO=0 explicitly.

The variable TIMEOUT_SCALE allows to scale MAX_JOB_TIME and timeouts within the backend, for
example the test API. This is supposed to be set within the worker settings on slow worker hosts. It
has no influence on the video setting.

41.2. Capturing kernel exceptions and/or any other
exceptions from the serial console
Soft and hard failures can be triggered on demand by regular expressions when they match the
serial output which is done after the test is executed. In case it does not make sense to continue the
test run even if the current test module does not have the fatal flag, use fatal as serial failure type,
so all subsequent test modules will not be executed if such failure was detected.

To use this functionality the test developer needs to define the patterns to look for in the serial
output either in the main.pm or in the test itself. Any pattern change done in a test it will be
reflected in the next tests.

The patterns defined in main.pm will be valid for all the tests.

To simplify tests results review, if job fails with the same message, which is defined for the pattern,
as previous job, automatic comment carryover will work even if test suites have failed due to
different test modules.

Example: Defining serial exception capture in the main.pm

$testapi::distri->set_expected_serial_failures([
 {type => 'soft', message => 'known issue', pattern => quotemeta 'Error'},
 {type => 'hard', message => 'broken build', pattern => qr/exception/},
 {type => 'fatal', message => 'critical issue build', pattern => qr/kernel
oops/},
]
);

113

Example: Defining serial exception capture in the test

sub run {
 my ($self) = @_;
 $self->{serial_failures} = [
 {type => 'soft', message => 'known issue', pattern => quotemeta 'Error'},
 {type => 'hard', message => 'broken build', pattern => qr/exception/},
 {type => 'fatal', message => 'critical issue build', pattern => qr/kernel
oops/},
];
 ...
}

Example: Adding serial exception capture in the test

sub run {
 my ($self) = @_;
 push @$self->{serial_failures}, {type => 'soft', message => 'known issue',
pattern => quotemeta 'Error'};
 ...
}

41.3. Traceability and reproducibility of tests
openQA allows keeping track of the test environment, the version of the test code and needles, the
test configuration and what specific system was tested.

41.3.1. General remarks on tracing

The test configuration of a specific test run can be viewed in form of job settings on the test details
page. Those settings contain the specific test configuration. The specific system that was tested is
also listed there in via the corresponding asset variables.

In addition to that, the following variables can be found in the file vars.json when Git is used:

• TEST_GIT_HASH: The specific version of the tests that were executed.

• NEEDLES_GIT_HASH: The specific version of the needles that were used during the test run.

This file is upload when a test run has concluded and can be found under the "Logs & Assets" tab.

There is also the "Investigation" tab on failed tests. It shows what has changed since the last good
test run.

The next section explains how to keep track of the test environment.

41.3.2. Logging package versions used for test

There are two sets of packages that can be included in test logs:

114

1. Packages installed on the worker itself - stored as worker_packages.txt.

2. Packages installed on SUT - stored as sut_packages.txt.

For both sets, if present, openQA will include the difference to the last good job in the
"Investigation" tab of a failed job.

To enable logging of worker package versions, set PACKAGES_CMD in workers.ini. The command
should print installed packages with their version to stdout. For RPM-based systems it can be for
example rpm -qa.

To enable logging of SUT package versions, make the test create the file sut_packages.txt in the
current worker directory. If upload_logs() is used, the resulting file needs to be copied/moved.

Example: Logging SUT package versions

use Mojo::File qw(path);
sub run {
 ...
 assert_script_run("rpm -qa > sut_packages.txt");
 my $fname = upload_logs("sut_packages.txt");
 path("ulogs/$fname")->move_to("sut_packages.txt");
 ...
}

41.3.3. General remarks on reproducibility

Clicking the restart button on a concrete test run will create a new test job with the same
configuration. The new test will however use the latest version of the test code and needles unless
CASEDIR/NEEDLES_DIR specify a concrete version via a Git URL. The test environment of restarted jobs
might differ as well, e.g. because the worker host has been updated or a completely different
worker host has been chosen to run the job.

To re-run a test again under the same conditions it might be useful to clone it with a command like
openqa-clone-job --within-instance … CASEDIR=… NEEDLES_DIR=… WORKER_CLASS=… instead of using
the restart button. This way one can specify a concrete commit hash for tests and/or needles (see
Triggering … based on Git refspec … for details) and a concrete worker host (see Assigning jobs to
workers). The script openqa-investigate helps automating retries like this. It will also automatically
create a comment with the findings.

To improve reproducibility one should also avoid relying on any external resource like online
repositories because those are not controlled by openQA test variables.

Sometimes issues are sporadic and therefore hard to reproduce. The section about statistical
investigation might be helpful in this case.

41.4. Assigning jobs to workers
By default, any worker can get any job with the matching architecture.

115

https://github.com/os-autoinst/scripts/blob/master/README.md#openqa-investigate---automatic-investigation-jobs-with-failure-analysis-in-openqa
https://github.com/os-autoinst/scripts/blob/master/README.md#more-details-and-examples-about-openqa-investigate-comments

This behavior can be changed by setting the job variable WORKER_CLASS taking a comma-separated
list of worker class values. The values are combined from multiple places where defined. Typically
machines and test suite configurations set the worker class. Jobs with this variable set are assigned
only to workers, which have all corresponding worker class values in their configuration (and-
combination).

For example, the following configuration ensures, that jobs with WORKER_CLASS=desktop can be
assigned only to worker instances 1 and 2. Jobs with WORKER_CLASS=desktop,foo can only be assigned
to worker instance 2 which has both the values desktop and foo:

File: workers.ini

[1]
WORKER_CLASS = desktop

[2]
WORKER_CLASS = desktop,foo,bar
BAR = this value has precedence over the one from the "class:foo" section below

[3]
WORKER_CLASS is not set

[4-10,20-25,30]
WORKER_CLASS = yet-another-class

[4-6]
WORKER_CLASS += appended-worker-class

[class:foo]
FOO = this value is present on all instances where WORKER_CLASS contains foo
BAR = this value is would be present in the same way but is overridden by slot 2

It is possible to specify comma-separated lists of instance numbers and ranges. So in the example
above the instances 4 to 10 (inclusive), 20 to 25 (inclusive) and 30 will have the WORKER_CLASS set to
yet-another-class.

Values specified in additional sections override values specified in preceding sections. One can use
+= to append sections instead. So in this example slots 4 to 6 will have the WORKER_CLASS set to yet-
another-class,appended-worker-class.

As shown it is also possible to specify a section with the name [class:…] to specify WORKER_CLASS
-specific values. Note that values in the concrete sections for instance numbers have precedence.

Worker class values can also be set to additionally qualify workers or worker instances for
informational purposes, for example region and location tags based on company conventions:

116

File: workers.ini

[global]
WORKER_CLASS = planet-earth,continent-antarctica,location-my_station

41.5. Running a custom worker engine
By default the openQA workers run the "isotovideo" application from PATH on the worker host, that
is in most cases isotovideo. A custom worker engine command can be set with the test variable
ISOTOVIDEO. For example to run isotovideo from a custom container image one could use the test
variable setting ISOTOVIDEO=podman run --pull=always --rm -it
registry.example.org/my/container/isotovideo /usr/bin/isotovideo -d

41.6. Automatic retries of jobs
You might encounter flaky openQA tests that fail sporadically. The best way to address flaky test
code is of course to fix the test code itself. For example, if certain steps rely on external components
over network, retries within the test modules should be applied.

However, there can still be cases where you might want openQA to automatically retrigger jobs.
This can be achieved by setting the test variable RETRY in the format <retries>[:<description>] to an
integer value with the maximum number of retries and an optional description string separated by
a colon. For example triggering an openQA job with the variable RETRY=2:bug#42 will retrigger an
openQA test on failure up to 2 totalling to up to 3 jobs. Note that the retry jobs are scheduled
immediately and will be executed as soon as possible depending on available worker slots. Many
factors can change in retries impacting the reproducibility, e.g. the used worker host and instance,
any network related content, etc. By default openQA tests do not retry. The optional, additional
description string is used only for reference and has no functional impact.

See Automatic cloning of incomplete jobs for an additional solution intended for administrators
handling known issues causing incomplete jobs.

Custom hook scripts on "job done" based on result can be used to apply more elaborate issue
detection and retriggering of tests.

41.7. Job dependencies
There are different dependency types, most importantly chained and parallel dependencies.

A dependency is always between two jobs where one of the jobs is the parent and one the child. The
concept of parent and child jobs is orthogonal to the concept of types.

A job can have multiple dependencies. So in conclusion, a job can have multiple children and
multiple parents at the same time and each child/parent-relation can be of an arbitrary type.

Additionally, dependencies can be machine-specific (see Inter-machine dependencies section).

117

https://github.com/os-autoinst/os-autoinst/blob/master/isotovideo

41.7.1. Declaring dependencies

Dependencies are declared by adding a job setting on the child job specifying its parents. There is
one variable for each dependency type.

When starting jobs based on templates the relevant settings are START_AFTER_TEST,
START_DIRECTLY_AFTER_TEST and PARALLEL_WITH. Details are explained for the different dependency
types specifically in the subsequent sections. Generally, if declaring a dependency does not work as
expected, be sure to check the "scheduled product" for the jobs (which is linked on the info box of
the details page of any created job).

When starting a single set of new jobs, the dependencies must be declared as explained in the
Further examples for advanced dependency handling section. The variables mentioned in the
subsequent sections do not apply.

Chained dependencies

Chained dependencies declare that one test must only run after another test has concluded. For
instance, extra tests relying on a successfully finished installation should declare a chained
dependency on the installation test.

There are also directly-chained dependencies. They are similar to chained dependencies but are
strictly a distinct type. The difference between chained and directly-chained dependencies is that
directly-chained means the tests must run directly after another on the same worker slot. This can
be useful to test efficiently on bare metal SUTs and other self-provisioning environments.

Tests that are waiting for their chained parents to finish are shown as "blocked" in the web UI. Tests
that are waiting for their directly-chained parents to finish are shown as "assigned" in the web UI.

To declare a chained dependency add the variable START_AFTER_TEST with the name(s) of test suite(s)
after which the selected test suite is supposed to run. Use a comma-separated list for multiple test
suite dependencies, e.g. START_AFTER_TEST="kde,dhcp-server".

To declare a directly-chained dependency add the variable START_DIRECTLY_AFTER_TEST. It works in
the same way as for chained dependencies. Mismatching worker classes between jobs to run in
direct sequence on the same worker are considered an error.

NOTE
The set of all jobs that have direct or indirect directly-chained dependencies
between each other is sometimes called a directly-chained cluster. All jobs within the
cluster will be assigned to a single worker-slot at the same time by the scheduler.

Parallel dependencies

Parallel dependencies declare that tests must be scheduled to run at the same time. An example are
"multi-machine tests" which usually test some kind of server and multiple clients. In this example
the client tests should declare a parallel dependency on the server tests.

To declare a parallel dependency, use the PARALLEL_WITH variable with the name(s) of test suite(s)
that need other test suite(s) to run at the same time. In other words, PARALLEL_WITH declares "I need
this test suite to be running during my run". Use a comma separated list for multiple test suite

118

dependencies (e.g. PARALLEL_WITH="web-server,dhcp-server").

Keep in mind that the parent job must be running until all children finish. Otherwise the scheduler
will cancel child jobs once parent is done.

NOTE

The set of all jobs that have direct or indirect parallel dependencies between each
other is sometimes called a parallel cluster. The scheduler can only assign these jobs
if there is a sufficient number of free worker-slots. To avoid a parallel cluster from
starvation its priority is increased gradually and eventually workers can be held
back for the cluster.

Dependency pinning

It is possible to ensure that all jobs within the same parallel cluster are executed on the same
worker host. This is useful for connecting the SUTs without having to connect the physical worker
hosts. Use PARALLEL_ONE_HOST_ONLY=1 to enable this. This setting can be applied as a test variable
during the time of scheduling as well as in the worker configuration file workers.ini.

WARNING

You need to provide enough worker slots on single worker hosts to fit an entire
cluster. So this feature is mainly intended to workaround situations where
establishing a physical connection between worker hosts is problematic and
should not be used needlessly. This feature is also still subject to change as we
explore ways to make it more flexible.

41.7.2. Inter-machine dependencies

Those dependencies make it possible to create job dependencies between tests which are supposed
to run on different machines.

To use it, simply append the machine name for each dependent test suite with an @ sign separated.
If a machine is not explicitly defined, the variable MACHINE of the current job is used for the
dependent test suite.

Example 1:

START_AFTER_TEST="kde@64bit-1G,dhcp-server@64bit-8G"

Example 2:

PARALLEL_WITH="web-server@ipmi-fly,dhcp-server@ipmi-bee,http-server"

Then, in job templates, add test suite(s) and all of its dependent test suite(s). Keep in mind to place
the machines which have been explicitly defined in a variable for each dependent test suite.
Checkout the following example sections to get a better understanding.

119

41.7.3. Handling of related jobs on failure / cancellation / restart

openQA tries to handle things sensibly when jobs with dependencies either fail, or are manually
cancelled or restarted:

• When a chained or parallel parent fails or is cancelled, all children will be cancelled.

• When a parent is restarted, all children are also restarted recursively.

• When a parallel child is restarted, the parent and siblings will also be restarted.

• When a regularly chained child is restarted, the parent is only restarted if it failed. This will
usually be fine, but be aware that if an asset uploaded by the chained parent has been cleaned
up, the child may fail immediately. To deal with this case, just restart the parent to recreate the
asset.

• When a directly chained child is restarted, all directly chained parents are recursively
restarted (but not directly chained siblings). Otherwise it would not be possible to guarantee
that the jobs run directly after each other on the same worker.

• When a parallel child fails or is cancelled, the parent and all other children are also cancelled.
This behaviour is intended for closely-related clusters of jobs, e.g. high availability tests, where
it’s sensible to assume the entire test is invalid if any of its components fails. A special variable
can be used to change this behaviour. Setting a parallel parent job’s
PARALLEL_CANCEL_WHOLE_CLUSTER to a false value, i.e. 0, changes this so that, if one of its
children fails or is cancelled but the parent has other pending or active children, the parent and
the other children will not be cancelled. This behaviour makes more sense if the parent is
providing services to the various children but the children themselves are not closely related
and a failure of one does not imply that the tests run by the other children and the parent are
invalid.

Further notes

• The API also allows to skip restarting parents via skip_parents=1 and to skip restarting children
via skip_children=1. It is also possible to skip restarting only passed and softfailed children via
skip_ok_result_children=1.

• Restarting multiple directly chained children individually is not possible because the parent
would be restarted twice which is not possible. So one needs to restart the parent job instead.
Use the mentioned skip_ok_result_children=1 to restart only jobs which are not ok

41.7.4. Handling of dependencies when cloning jobs

Be sure to have ready the job dependencies section to have an understanding of different
dependency types and the distinction between parents and children.

When cloning a job via openqa-clone-job, parent jobs are cloned as well by default, regardless of the
type. Use --skip-deps to avoid cloning parent jobs. Use --skip-chained-deps to avoid cloning parents
of the types CHAINED and DIRECTLY_CHAINED.

When cloning a job via openqa-clone-job, child jobs of the type PARALLEL are cloned by default. Use
--clone-children to clone child jobs of other types as well. By default, only direct children are
considered (regardless of the type). Use --max-depth to specify a higher depth (0 denotes infinity). Be

120

aware that this affects siblings as well when cloning parents (as explained in the previous
paragraph).

As a consequence it makes a difference which job of the dependency tree is cloned, especially with
default parameters. Examples:

• Cloning a chained child (e.g. an "extra" test) will clone its parents (e.g. an "installation" test) as
well but not vice versa.

• To clone a parallel cluster, the parallel parent should be cloned (e.g. the "server" test). When
cloning a parallel child, only that child and the parent will be cloned but not the siblings (e.g.
the other "client" tests).

41.7.5. Examples

Specify machine explicitly

Assume there is a test suite A supposed to run on machine 64bit-8G. Additionally, test suite B
supposed to run on machine 64bit-1G.

That means test suite B needs the variable START_AFTER_TEST=A@64bit-8G. This results in the following
dependency:

A@64bit-8G --> B@64bit-1G

Implicitly inherit machines from parent

Assume test suite A is supposed to run on the machines 64bit and ppc. Additionally, test suite B is
supposed to run on both of these machines as well. This can be achieved by simply adding the
variable START_AFTER_TEST=A to test suite B (omitting the machine at all). openQA take the best
matches. This results in the following dependencies:

A@64bit --> B@64bit
A@ppc --> B@ppc

Conflicting machines prevent inheritance from parent

Assume test suite A is supposed to run on machine 64bit-8G. Additionally, test suite B is supposed to
run on machine 64bit-1G.

Adding the variable START_AFTER_TEST=A to test suite B will not work. That means openQA will not
create a job dependency and instead shows an error message. So it is required to explicitly define
the variable as START_AFTER_TEST=A@64bit-8G in that case.

Consider a different example: Assume test suite A is supposed to run on the machines ppc, 64bit and
s390x. Additionally, there are 3 testsuites B on ppc-1G, C on ppc-2G and D on ppc64le.

Adding the variable PARALLEL_WITH=A@ppc to the test suites B, C and D will result in the following

121

dependencies:

 A@ppc
 ^
 / | \
 / | \
B@ppc-1G C@ppc-2G D@ppc64le

openQA will also show errors that test suite A is not necessary on the machines 64bit and s390x.

Implicitly creating a dependency on same machine

Assume the value of the variable START_AFTER_TEST or PARALLEL_WITH only contains a test suite name
but no machine (e.g. START_AFTER_TEST=A,B or PARALLEL_WITH=A,B).

In this case openQA will create job dependencies that are scheduled on the same machine if all test
suites are placed on the same machine.

41.7.6. Notes regarding directly chained dependencies

Having multiple jobs with START_DIRECTLY_AFTER_TEST pointing to the same parent job is possible,
e.g.:

 --> B --> C
 /
A
 \
 --> D --> E

Of course only either B or D jobs can really be started directly after A. However, the use of
START_DIRECTLY_AFTER_TEST still makes sure that no completely different job is executed in the
middle and of course that all of these jobs are executed on the same worker.

The directly chained sub-trees are executed in alphabetical order. So the above tree would result in
the following execution order: A, B, C, D, E.

If A fails, none of the other jobs are attempted to be executed. If B fails, C is not attempted to be
executed but D and E are. The assumption is that the average error case does not leave the system in
a completely broken state and possibly required cleanup is done in the post fail hook.

Directly chained dependencies and regularly chained dependencies can be mixed. This allows to
create a dependency tree which contains multiple directly chained sub-trees. Be aware that these
sub-trees might be executed on different workers and depending on the tree even be executed in
parallel.

41.7.7. Worker requirements

CHAINED and DIRECTLY_CHAINED dependencies require only one worker. PARALLEL dependencies on the

122

other hand require as many free workers as jobs are present in the parallel cluster.

Examples

Listing 1. CHAINED - i.e. test basic functionality before going advanced - requires 1 worker

A --> B --> C

Define test suite A,
then define B with variable START_AFTER_TEST=A and then define C with
START_AFTER_TEST=B

-or-

Define test suite A, B
and then define C with START_AFTER_TEST=A,B
In this case however the start order of A and B is not specified.
But C will start only after A and B are successfully done.

Listing 2. PARALLEL basic High-Availability

A
^
B

Define test suite A
and then define B with variable PARALLEL_WITH=A.
A in this case is parent test suite to B and must be running throughout B run.

Listing 3. PARALLEL with multiple parents - i.e. complex support requirements for one test - requires 4
workers

A B C
\ | /
 ^
 D

Define test suites A,B,C
and then define D with PARALLEL_WITH=A,B,C.
A,B,C run in parallel and are parent test suites for D and all must run until D
finish.

123

Listing 4. PARALLEL with one parent - i.e. running independent tests against one server - requires at least 2
workers

 A
 ^
 /|\
 B C D

Define test suite A
and then define B,C,D with PARALLEL_WITH=A
A is parent test suite for B, C, D (all can run in parallel).
Children B, C, D can run and finish anytime, but A must run until all B, C, D
finishes.

41.8. Writing multi-machine tests
Scenarios requiring more than one system under test (SUT), like High Availability testing, are
covered as multi-machine tests (MM tests) in this section.

openQA approaches multi-machine testing by assigning parallel dependencies between individual
jobs (which are explained in the previous section). For MM tests specifically, also take note of the
following remarks:

• Everything needed for MM tests must be running as a test job (or you are on your own). Even
support infrastructure (custom DHCP, NFS, etc. if required), which in principle is not part of the
actual testing, must have a defined test suite so a test job can be created.

• The openQA scheduler makes sure tests are started as a group and in right order, cancelled as a
group if some dependencies are violated and cloned as a group if requested (according to the
specified job dependencies).

• openQA does not automatically synchronize individual steps of the tests.

• openQA provides a locking server for basic synchronization of tests (e.g. wait until services are
ready for failover). The correct usage of these locks is the responsibility of the test writer
(beware deadlocks).

In short, writing multi-machine tests adds a few more layers of complexity:

1. Documenting the dependencies and order between individual tests

2. Synchronization between individual tests

3. Actual technical realization (i.e. custom networking)

41.9. Test synchronization and locking API
openQA provides a locking API. To use it in your test files import the lockapi package (use lockapi;).
It provides the following functions: mutex_create, mutex_lock, mutex_unlock, mutex_wait

Each of these functions takes the name of the mutex lock as first parameter. The name must not

124

contain the "-" character. Mutex locks are associated with the caller’s job.

mutex_lock tries to lock the mutex for the caller’s job. The mutex_lock call blocks if the mutex does
not exist or has been locked by a different job.

mutex_unlock tries to unlock the mutex. If the mutex is locked by a different job, mutex_unlock call
blocks until the lock becomes available. If the mutex does not exist the call returns immediately
without doing anything.

mutex_wait is a combination of mutex_lock and mutex_unlock. It displays more information about
mutex state (time spent waiting, location of the lock). Use it if you need to wait for a specific action
from single place (e.g. that Apache is running on the master node).

mutex_create creates a new mutex which is initially unlocked. If the mutex already exists the call
returns immediately without doing anything.

Mutexes are addressed by their name. Each cluster of parallel jobs (defined via PARALLEL_WITH
dependencies) has its own namespace. That means concurrently running jobs in different parallel
job clusters use distinct mutexes (even if the same names are used).

The mmapi package provides wait_for_children which the parent can use to wait for the children to
complete.

125

use lockapi;
use mmapi;

On parent job
sub run {
 # ftp service started automatically on boot
 assert_screen 'login', 300;

 # unlock by creating the lock
 mutex_create 'ftp_service_ready';

 # wait until all children finish
 wait_for_children;
}

On child we wait for ftp server to be ready
sub run {
 # wait until ftp service is ready
 # performs mutex lock & unlock internally
 mutex_wait 'ftp_service_ready';

 # connect to ftp and start downloading
 script_run 'ftp parent.job.ip';
 script_run 'get random_file';
}

Mutexes can be used also for garanting exclusive access to resource
Example on child when only one job should access ftp at time
sub run {
 # wait until ftp service is ready
 mutex_lock 'ftp_service_ready';

 # Perform operation with exclusive access
 script_run 'ftp parent.job.ip';
 script_run 'put only_i_am_here';
 script_run 'bye';

 # Allow other jobs to connect afterwards
 mutex_unlock 'ftp_service_ready';
}

Sometimes it is useful to wait for a certain action from the child or sibling job rather than the
parent. In this case the child or sibling will create a mutex and any cluster job can lock/unlock it.

The child can however die at any time. To prevent parent deadlock in this situation, it is required to
pass the mutex owner’s job ID as a second parameter to mutex_lock and mutex_wait. The mutex
owner is the job that creates the mutex. If a child job with a given ID has already finished,
mutex_lock calls die. The job ID is also required when unlocking such a mutex.

126

Example of mmapi: Parent JobWait until the child reaches given point

use lockapi;
use mmapi;

sub run {
 my $children = get_children();

 # let's suppose there is only one child
 my $child_id = (keys %$children)[0];

 # this blocks until the lock is available and then does nothing
 mutex_wait('child_reached_given_point', $child_id);

 # continue with the test
}

Mutexes are a way to wait for specific events from a single job. When we need multiple jobs to
reach a certain state we need to use barriers.

To create a barrier call barrier_create with the parameters name and count. The name serves as an
ID (same as with mutexes). The count parameter specifies the number of jobs needed to call
barrier_wait to unlock barrier.

There is an optional barrier_wait parameter called check_dead_job. When used it will kill all jobs
waiting in barrier_wait if one of the cluster jobs dies. It prevents waiting for states that will never
be reached (and eventually dies on job timeout). It should be set only on one of the barrier_wait
calls.

An example would be one master and three worker jobs and you want to do initial setup in the
three worker jobs before starting main actions. In such a case you might use check_dead_job to
avoid useless actions when one of the worker jobs dies.

127

Example of barriers: Check for dead jobs while waiting for barrier

use lockapi;

In main.pm
barrier_create('NODES_CONFIGURED', 4);

On master job
sub run {
 assert_screen 'login', 300;

 # Master is ready, waiting while workers are configured (check_dead_job is
optional)
 barrier_wait {name => "NODES_CONFIGURED", check_dead_job => 1};

 # When 4 jobs called barrier_wait they are all unblocked
 script_run 'create_cluster';
 script_run 'test_cluster';

 # Notify all nodes that we are finished
 mutex_create 'CLUSTER_CREATED';
 wait_for_children;
}

On 3 worker jobs
sub run {
 assert_screen 'login', 300;

 # do initial worker setup
 script_run 'zypper in HA';
 script_run 'echo IP > /etc/HA/node_setup';

 # Join the group of jobs waiting for each other
 barrier_wait 'NODES_CONFIGURED';

 # Don't finish until cluster is created & tested
 mutex_wait 'CLUSTER_CREATED';
}

Getting information about parents and children

128

Example of mmapi: Getting info about parents / children

use Mojo::Base "basetest";
use testapi;
use mmapi;

sub run {
 # returns a hash ref containing (id => state) for all children
 my $children = get_children();

 for my $job_id (keys %$children) {
 print "$job_id is cancelled\n" if $children->{$job_id} eq 'cancelled';
 }

 # returns an array with parent ids, all parents are in running state (see Job
dependencies above)
 my $parents = get_parents();

 # let's suppose there is only one parent
 my $parent_id = $parents->[0];

 # any job id can be queried for details with get_job_info()
 # it returns a hash ref containing these keys:
 # name priority state result worker_id
 # t_started t_finished test
 # group_id group settings
 my $parent_info = get_job_info($parent_id);

 # it is possible to query variables set by openqa frontend,
 # this does not work for variables set by backend or by the job at runtime
 my $parent_name = $parent_info->{settings}->{NAME}
 my $parent_desktop = $parent_info->{settings}->{DESKTOP}
 # !!! this does not work, VNC is set by backend !!!
 # my $parent_vnc = $parent_info->{settings}->{VNC}
}

41.10. Support Server based tests
The idea is to have a dedicated "helper server" to allow advanced network based testing.

Support server takes advantage of the basic parallel setup as described in the previous section, with
the support server being the parent test 'A' and the test needing it being the child test 'B'. This
ensures that the test 'B' always have the support server available.

41.10.1. Preparing the supportserver

The support server image is created by calling a special test, based on the autoyast test:

129

/usr/share/openqa/script/client jobs post DISTRI=opensuse VERSION=13.2 \
 ISO=openSUSE-13.2-DVD-x86_64.iso ARCH=x86_64 FLAVOR=Server-DVD \
 TEST=supportserver_generator MACHINE=64bit DESKTOP=textmode INSTALLONLY=1 \
 AUTOYAST=supportserver/autoyast_supportserver.xml SUPPORT_SERVER_GENERATOR=1 \
 PUBLISH_HDD_1=supportserver.qcow2

This produces QEMU image 'supportserver.qcow2' that contains the supportserver. The
'autoyast_supportserver.xml' should define correct user and password, as well as packages and the
common configuration.

More specific role the supportserver should take is then selected when the server is run in the
actual test scenario.

41.10.2. Using the supportserver

In the Test suites, the supportserver is defined by setting:

HDD_1=supportserver.qcow2
SUPPORT_SERVER=1
SUPPORT_SERVER_ROLES=pxe,qemuproxy
WORKER_CLASS=server,qemu_autoyast_tap_64

where the SUPPORT_SERVER_ROLES defines the specific role (see code in 'tests/support_server/setup.pm'
for available roles and their definition), and HDD_1 variable must be the name of the supportserver
image as defined via PUBLISH_HDD_1 variable during supportserver generation. If the support server
is based on older SUSE versions (opensuse 11.x, SLE11SP4..) it may also be needed to add
HDDMODEL=virtio-blk. In case of QEMU backend, one can also use BOOTFROM=c, for faster boot directly
from the HDD_1 image.

Then for the 'child' test using this supportserver, the following additional variable must be set:
PARALLEL_WITH=supportserver-pxe-tftp where 'supportserver-pxe-tftp' is the name given to the
supportserver in the test suites screen. Once the tests are defined, they can be added to openQA in
the usual way:

/usr/share/openqa/script/client isos post DISTRI=opensuse VERSION=13.2 \
 ISO=openSUSE-13.2-DVD-x86_64.iso ARCH=x86_64 FLAVOR=Server-DVD

where the DISTRI, VERSION, FLAVOR and ARCH correspond to the job group containing the tests. Note
that the networking is provided by tap devices, so both jobs should run on machines defined by
(apart from others) having NICTYPE=tap, WORKER_CLASS=qemu_autoyast_tap_64.

130

Example of Support Server: a simple tftp test

Let’s assume that we want to test tftp client operation. For this, we setup the supportserver as a
tftp server:

HDD_1=supportserver.qcow2
SUPPORT_SERVER=1
SUPPORT_SERVER_ROLES=dhcp,tftp
WORKER_CLASS=server,qemu_autoyast_tap_64

With a test-suites name supportserver-opensuse-tftp.

The actual test 'child' job, will then have to set PARALLEL_WITH=supportserver-opensuse-tftp, and also
other variables according to the test requirements. For convenience, we have also started a dhcp
server on the supportserver, but even without it, network could be set up manually by assigning a
free ip address (e.g. 10.0.2.15) on the system of the test job.

Example of Support Server: The code in the *.pm module doing the actual tftp test could then look
something like the example below

use Mojo::Base 'basetest';
use testapi;

sub run {
 my $script="set -e -x\n";
 $script.="echo test >test.txt\n";
 $script.="time tftp ".$server_ip." -c put test.txt test2.txt\n";
 $script.="time tftp ".$server_ip." -c get test2.txt\n";
 $script.="diff -u test.txt test2.txt\n";
 script_output($script);

}

assuming of course, that the tested machine was already set up with necessary infrastructure for
tftp, e.g. network was set up, tftp rpm installed and tftp service started, etc. All of this could be
conveniently achieved using the autoyast installation, as shown in the next section.

131

Example of Support Server: autoyast based tftp test

Here we will use autoyast to setup the system of the test job and the os-autoinst autoyast
testing infrastructure. For supportserver, this means using proxy to access QEMU provided
data, for downloading autoyast profile and tftp verify script:

HDD_1=supportserver.qcow2
SUPPORT_SERVER=1
SUPPORT_SERVER_ROLES=pxe,qemuproxy
WORKER_CLASS=server,qemu_autoyast_tap_64

The actual test 'child' job, will then be defined as:

AUTOYAST=autoyast_opensuse/opensuse_autoyast_tftp.xml
AUTOYAST_VERIFY=autoyast_opensuse/opensuse_autoyast_tftp.sh
DESKTOP=textmode
INSTALLONLY=1
PARALLEL_WITH=supportserver-opensuse-tftp

again assuming the support server’s name being supportserver-opensuse-tftp. Note that the pxe role
already contains tftp and dhcp server role, since they are needed for the pxe boot to work.

Example of Support Server: The tftp test defined in the autoyast_opensuse/opensuse_autoyast_tftp.sh file
could be something like:

set -e -x
echo test >test.txt
time tftp #SERVER_URL# -c put test.txt test2.txt
time tftp #SERVER_URL# -c get test2.txt
diff -u test.txt test2.txt && echo "AUTOYAST OK"

and the rest is done automatically, using already prepared test modules in tests/autoyast
subdirectory.

41.11. Using text consoles and the serial terminal
Typically the OS you are testing will boot into a graphical shell e.g. The Gnome desktop
environment. This is fine if you wish to test a program with a GUI, but in many situations you will
need to enter commands into a textual shell (e.g Bash), TTY, text terminal, command prompt, TUI
etc.

openQA has two basic methods for interacting with a text shell. The first uses the same input and
output methods as when interacting with a GUI, plus a serial port for getting raw text output from
the SUT. This is primarily implemented with VNC and so I will referrer to it as the VNC text console.

132

The serial port device which is used with the VNC text console is the default virtual serial port
device in QEMU (i.e. the device configured with the -serial command line option). I will refer to
this as the "default serial port". openQA currently only uses this serial port for one way
communication from the SUT to the host.

The second method uses another serial port for both input and output. The SUT attaches a TTY to
the serial port which os-autoinst logs into. All communication is therefore text based, similar to if
you SSH’d into a remote machine. This is called the serial terminal console (or the virtio console,
see implementation section for details).

The VNC text console is very slow and expensive relative to the serial terminal console, but allows
you to continue using assert_screen and is more widely supported. Below is an example of how to
use the VNC text console.

To access a text based console or TTY, you can do something like the

following.

use 5.018;
use Mojo::Base 'opensusebasetest';
use testapi;
use utils;

sub run {
 wait_boot; # Utility function defined by the SUSE distribution
 select_console 'root-console';
}

This will select a text TTY and login as the root user (if necessary). Now that we are on a text
console it is possible to run scripts and observe their output either as raw text or on the video
feed.

Note that root-console is defined by the distribution, so on different distributions or operating
systems this can vary. There are also many utility functions that wrap select_console, so check
your distribution’s utility library before using it directly.

133

Running a script: Using the assert_script_run and script_output commands

assert_script_run('cd /proc');
my $cpuinfo = script_output('cat cpuinfo');
if($cpuinfo =~ m/avx2/) {
 # Do something which needs avx2
}
else {
 # Do some workaround
}

This returns the contents of the SUT’s /proc/cpuinfo file to the test script and then searches it
for the term 'avx2' using a regex.

The script_run and script_output are high level commands which use type_string and wait_serial
underneath. Sometimes you may wish to use lower level commands which give you more control,
but be warned that it may also make your code less portable.

The command wait_serial watches the SUT’s serial port for text output and matches it against a
regex. type_string sends a string to the SUT like it was typed in by the user over VNC.

41.11.1. Using a serial terminal

IMPORTANT

You need a QEMU version >= 2.6.1 and to set the VIRTIO_CONSOLE variable to 1
to use this with the QEMU backend (it is enabled by default for os-autoinst-
distri- opensuse tests). The svirt backend uses the SERIAL_CONSOLE variable,
but only on s390x machines it has been confirmed to be working (failing on
Hyper-V, VMware and XEN, see poo#55985).

Usually openQA controls the system under test using VNC. This allows the use of both graphical and
text based consoles. Key presses are sent individually as VNC commands and output is returned in
the form of screen images and text output from the SUT’s default serial port.

Sending key presses over VNC is very slow, so for tests which send a lot of text commands it is much
faster to use a serial port for both sending shell commands and received program output.

Communicating entirely using text also means that you no longer have to worry about your needles
being invalidated due to a font change or similar. It is also much cheaper to transfer text and test it
against regular expressions than encode images from a VNC feed and test them against sample
images (needles).

On the other hand you can no longer use assert_screen or take a screen shot because the text is
never rendered as an image. A lot of programs will also send ANSI escape sequences which will
appear as raw text to the test script instead of being interpreted by a terminal emulator which then
renders the text.

134

https://github.com/os-autoinst/os-autoinst-distri-opensuse
https://github.com/os-autoinst/os-autoinst-distri-opensuse
https://progress.opensuse.org/issues/55985

select_console('root-virtio-terminal'); # Selects a virtio based serial terminal

The above code will cause type_string and wait_serial to write and read from a virtio serial port. A
distribution specific call back will be made which allows os-autoinst to log into a serial terminal
session running on the SUT. Once select_console returns you should be logged into a TTY as root.

NOTE
for os-autoinst-distri-opensuse tests instead of using select_console('root-virtio-
terminal') directly is the preferred way to use wrapper select_serial_terminal(),
which handles all backends:

Selects a virtio based serial terminal if available or fallback to the best suitable
console
for the current backend.
select_serial_terminal();

If you are struggling to visualise what is happening, imagine SSH-ing into a remote machine as root,
you can then type in commands and read the results as if you were sat at that computer. What we
are doing is much simpler than using an SSH connection (it is more like using GNU screen with a
serial port), but the end result looks quite similar.

As mentioned above, changing input and output to a serial terminal has the effect of changing
where wait_serial reads output from. On a QEMU VM wait_serial usually reads from the default
serial port which is also where the kernel log is usually output to.

When switching to a virtio based serial terminal, wait_serial will then read from a virtio serial port
instead. However the default serial port still exists and can receive output. Some utility library
functions are hard coded to redirect output to the default serial port and expect that wait_serial
will be able to read it. Usually it is not too difficult to fix the utility function, you just need to
remove some redirection from the relevant shell command.

Another common problem is that some library or utility function tries to take a screen shot. The
hard part is finding what takes the screen shot, but then it is just a simple case of checking
is_serial_terminal and not taking the screen shot if we are on a serial terminal console.

Distributions usually wrap select_console, so instead of using it directly, you can use something like
the following which is from the OpenSUSE test suite.

if (select_serial_terminal()) {
 # Do something which only works, or is necessary, on a serial terminal
}

This selects the virtio based serial terminal console if possible. If it is available then it returns true.
It is also possible to check if the current console is a serial terminal by calling is_serial_terminal.

Once you have selected a serial terminal, the video feed will disappear from the live view, however
at the bottom of the live screen there is a separate text feed. After the test has finished you can view

135

https://github.com/os-autoinst/os-autoinst-distri-opensuse

the serial log(s) in the assets tab. You will probably have two serial logs; serial0.txt which is
written from the default serial port and serial_terminal.txt.

Now that you are on a serial terminal console everything will start to go a lot faster. So much faster
in fact that race conditions become a big issue. Generally these can be avoided by using the higher
level functions such as script_run and script_output.

It is rarely necessary to use the lower level functions, however it helps to recognise problems
caused by race conditions at the lower level, so please read the following section regardless.

So if you do need to use type_string and wait_serial directly then try to use the following pattern:

1) Wait for the terminal prompt to appear. 2) Send your command 3) Wait for your command text
to be echoed by the shell (if applicable) 4) Send enter 5) Wait for your command output (if
applicable)

To illustrate this is a snippet from the LTP test runner which uses the lower level commands to
achieve a little bit more control. I have numbered the lines which correspond to the steps above.

my $fin_msg = "### TEST $test->{name} COMPLETE >>> ";
my $cmd_text = qq($test->{command}; echo "$fin_msg\$?");
my $klog_stamp = "echo 'OpenQA::run_ltp.pm: Starting $test->{name}' >
/dev/$serialdev";

More variables and other stuff

if (is_serial_terminal) {
 script_run($klog_stamp);
 wait_serial(serial_term_prompt(), undef, 0, no_regex => 1); #Step 1
 type_string($cmd_text); #Step 2
 wait_serial($cmd_text, undef, 0, no_regex => 1); #Step 3
 type_string("\n"); #Step 4
} else {
 # None serial terminal console code (e.g. the VNC console)
}
my $test_log = wait_serial(qr/$fin_msg\d+/, $timeout, 0, record_output => 1); #Step 5

The first wait_serial (Step 1) ensures that the shell prompt has appeared. If we do not wait for the
shell prompt then it is possible that we can send input to whatever command was run before. In
this case that command would be 'echo' which is used by script_run to print a 'finished' message.

It is possible that echo was able to print the finish message, but was then suspended by the OS
before it could exit. In which case the test script is able to race ahead and start sending input to
echo which was intended for the shell. Waiting for the shell prompt stops this from happening.

INFO: It appears that echo does not read STDIN in this case, and so the input will stay inside STDIN’s
buffer and be read by the shell (Bash). Unfortunately this results in the input being displayed twice:
once by the terminal’s echo (explained later) and once by Bash. Depending on your configuration
the behavior could be completely different

136

The function serial_term_prompt is a distribution specific function which returns the characters
previously set as the shell prompt (e.g. export PS1="# ", see the bash(1) or dash(1) man pages). If you
are adapting a new distribution to use the serial terminal console, then we recommend setting a
simple shell prompt and keeping track of it with utility functions.

The no_regex argument tells wait_serial to use simple string matching instead of regular
expressions, see the implementation section for more details. The other arguments are the timeout
(undef means we use the default) and a boolean which inverts the result of wait_serial. These are
explained in the os-autoinst/testapi.pm documentation.

Then the test script enters our command with type_string (Step 2) and waits for the command’s text
to be echoed back by the system under test. Terminals usually echo back the characters sent to
them so that the user can see what they have typed.

However this can be disabled (see the stty(1) man page) or possibly even unimplemented on your
terminal. So this step may not be applicable, but it provides some error checking so you should
think carefully before disabling echo deliberately.

We then consume the echo text (Step 3) before sending enter, to both check that the correct text was
received and also to separate it from the command output. It also ensures that the text has been
fully processed before sending the newline character which will cause the shell to change state.

It is worth reminding oneself that we are sending and receiving data extremely quickly on an
interface usually limited by human typing speed. So any string which results in a significant state
change should be treated as a potential source of race conditions.

Finally we send the newline character and wait for our custom finish message. record_output is set
to ensure all the output from the SUT is saved (see the next section for more info).

What we do not do at this point, is wait for the shell prompt to appear. That would consume the
prompt character breaking the next call to script_run.

We choose to wait for the prompt just before sending a command, rather than after it, so that Step 5
can be deferred to a later time. In theory this allows the test script to perform some other work
while the SUT is busy.

41.11.2. Sending new lines and continuation characters

The following command will timeout: script_run("echo \"1\n2\""). The reason being script_run
will call wait_serial("echo \"1\n2\"") to check that the command was entered successfully and
echoed back (see above for explanation of serial terminal echo, note the echo shell command has
not been executed yet). However the shell will translate the newline characters into a newline
character plus '>', so we will get something similar to the following output.

echo "1
> 2"

The '>' is unexpected and will cause the match to fail. One way to fix this is simply to do echo -e
\"1\\n2\". In this case Perl will not replace \n with a newline character, instead it will be passed to

137

echo which will do the substitution instead (note the '-e' switch for echo).

In general you should be aware that, Perl, the guest kernel and the shell may transform whatever
character sequence you enter. Transformations can be spotted by comparing the input string with
what wait_serial actually finds.

41.11.3. Sending signals - ctrl-c and ctrl-d

On a VNC based console you simply use send_key like follows.

send_key('ctrl-c');

This usually (see termios(3)) has the effect of sending SIGINT to whatever command is running.
Most commands terminate upon receiving this signal (see signal(7)).

On a serial terminal console the send_key command is not implemented (see implementation
section). So instead the following can be done to achieve the same effect.

type_string('', terminate_with => 'ETX');

The ETX ASCII code means End of Text and usually results in SIGINT being raised. In fact pressing
ctrl-c may just be translated into ETX, so you might consider this a more direct method. Also you
can use 'EOT' to do the same thing as pressing ctrl-d.

You also have the option of using Perl’s control character escape sequences in the first argument to
type_string. So you can also send ETX with:

type_string("\cC");

The terminate_with parameter just exists to display intention. It is also possible to send any
character using the hex code like '\x0f' which may have the effect of pressing the magic SysRq key if
you are lucky.

41.11.4. The virtio serial terminal implementation

The os-autoinst package supports several types of 'consoles' of which the virtio serial terminal is
one. The majority of code for this console is located in consoles/virtio_terminal.pm and
consoles/serial_screen.pm (used also by the svirt serial console). However there is also related code
in backends/qemu.pm and distribution.pm.

You may find it useful to read the documentation in virtio_terminal.pm and serial_screen.pm if you
need to perform some special action on a terminal such as triggering a signal or simulating the
SysRq key. There are also some console specific arguments to wait_serial and type_string such as
record_output.

The virtio 'screen' essentially reads data from a socket created by QEMU into a ring buffer and
scans it after every read with a regular expression. The ring buffer is large enough to hold anything

138

you are likely to want to match against, but not too large as to cause performance issues. Usually
the contents of this ring buffer, up to the end of the match, are returned by wait_serial. This means
earlier output will be overwritten once the ring buffer’s length is exceeded. However you can pass
record_output which saves the output to a separate unlimited buffer and returns that instead.

Like record_output, the no_regex argument is a console specific argument supported by the serial
terminal console. It may or may not have some performance benefits, but more importantly it
allows you to easily match arbitrary strings which may contain regex escape sequences. To be clear,
no_regex hints that wait_serial should just treat its input as a plain string and use the Perl library
function index to search for a match in the ring buffer.

The send_key function is not implemented for the serial terminal console because the openQA
console implementation would need to map key actions like ctrl-c to a character and then send
that character. This may mislead some people into thinking they are actually sending ctrl-c to the
SUT and also requires openQA to choose what character ctrl-c represents which varies across
terminal configurations.

Very little of the code (perhaps none) is specific to a virtio based serial terminal and can be reused
with a physical serial port, SSH socket, IPMI or some other text based interface. It is called the virtio
console because the current implementation just uses a virtio serial device in QEMU (and it could
easily be converted to an emulated port), but it otherwise has nothing to do with the virtio standard
and so you should avoid using the name 'virtio console' unless specifically referring to the QEMU
virtio implementation.

As mentioned previously, ANSI escape sequences can be a pain. So we try to avoid them by
informing the shell that it is running on a 'dumb' terminal (see the SUSE distribution’s serial
terminal utility library). However some programs ignore this, but piping there output into tee is
usually enough to stop them outputting non-printable characters.

139

Chapter 42. Test Development tricks

42.1. Trigger new tests by modifying settings from
existing test runs
To trigger new tests with custom settings the command line client openqa-cli can be used. To trigger
new tests relying on all settings from existing tests runs but modifying specific settings the openqa-
clone-job script can be used. Within the openQA repository the script is located at
/usr/share/openqa/script/. This tool can be used to create a new job that adds, removes or changes
settings.

This example adds or overrides FOO to be bar, removes BAZ and appends :PR-123 to TEST:

openqa-clone-job --from localhost --host localhost 42 FOO=bar BAZ= TEST+=:PR-123

NOTE
When cloning children via --clone-children as well, the children are also affected.
Parent jobs (which are cloned as well by default) are not affected unless the
--parental-inheritance flag is used.

If you do not want a cloned job to start up in the same job group as the job you cloned from, e.g. to
not pollute build results, the job group can be overwritten, too, using the special variable _GROUP.
Add the quoted group name, e.g.:

openqa-clone-job --from localhost 42 _GROUP="openSUSE Tumbleweed"

The special group value 0 means that the group connection will be separated and the job will not
appear as a job in any job group, e.g.:

openqa-clone-job --from localhost 42 _GROUP=0

42.2. Backend variables for faster test execution
The os-autoinst backend offers multiple test variables which are helpful for test development. For
example:

• Set _EXIT_AFTER_SCHEDULE=1 if you only want to evaluate the test schedule before the test
modules are executed

• Use _SKIP_POST_FAIL_HOOKS=1 to prevent lengthy post_fail_hook execution in case of expected
and known test fails, for examples when you need to create needles anyway

140

42.3. Using snapshots to speed up development of tests
For lower turn-around times during test development based on virtual machines the QEMU
backend provides a feature that allows a job to start from a snapshot which can help in this
situation.

Depending on the use case, there are two options to help:

• Create and preserve snapshots for every test module run (MAKETESTSNAPSHOTS)

◦ Offers more flexibility as the test can be resumed almost at any point. However disk space
requirements are high (expect more than 30GB for one job).

◦ This mode is useful for fixing non-fatal issues in tests and debugging SUT as more than just
the snapshot of the last failed module is saved.

• Create a snapshot after every successful test module while always overwriting the existing
snapshot to preserve only the latest (TESTDEBUG)

◦ Allows to skip just before the start of the first failed test module, which can be limiting, but
preserves disk space in comparison to MAKETESTSNAPSHOTS.

◦ This mode is useful for iterative test development

In both modes there is no need to modify tests (i.e. adding milestone test flag as the behaviour is
implied). In the later mode every test module is also considered fatal. This means the job is aborted
after the first failed test module.

42.3.1. Enable snapshots for each module

• Run the worker with --no-cleanup parameter. This will preserve the hard disks after test runs. If
the worker(s) are being started via the systemd unit, then this can achieved by using the openqa-
worker-no-cleanup@.service unit instead of openqa-worker@.service.

• Set MAKETESTSNAPSHOTS=1 on a job. This will make openQA save a snapshot for every test module
run. One way to do that is by cloning an existing job and adding the setting:

openqa-clone-job --from https://openqa.opensuse.org --host localhost 24
MAKETESTSNAPSHOTS=1

• Create a job again, this time setting the SKIPTO variable to the snapshot

• you need. Again, openqa-clone-job comes handy here:

openqa-clone-job --from https://openqa.opensuse.org --host localhost 24
SKIPTO=consoletest-yast2_i

• Use qemu-img snapshot -l something.img to find out what snapshots are in the image. Snapshots
are named "test module category"-"test module name" (e.g. installation-start_install).

141

42.3.2. Storing only the last successful snapshot

• Run the worker with --no-cleanup parameter. This will preserve the hard disks after test runs.

• Set TESTDEBUG=1 on a job. This will make openQA save a snapshot after each successful test
module run. Snapshots are overwritten. The snapshot is named lastgood in all cases.

openqa-clone-job --from https://openqa.opensuse.org --host localhost 24 TESTDEBUG=1

• Create a job again, this time setting the SKIPTO variable to the snapshot which failed on previous
run. Make sure the new job will also have TESTDEBUG=1 set. This can be ensured by the use of the
clone_job script on the clone source job or specifying the variable explicitly:

openqa-clone-job --from https://openqa.opensuse.org --host localhost 24 TESTDEBUG=1
SKIPTO=consoletest-yast2_i

42.4. Defining a custom test schedule or custom test
modules
Normally the test schedule, that is which test modules should be executed and which order, is
prescribed by the main.pm file within the test distribution. Additionally it is possible to exclude
certain test modules from execution using the os-autoinst test variables INCLUDE_MODULES and
EXCLUDE_MODULES. A custom schedule can be defined using the test variable SCHEDULE. Also test
modules can be defined and overridden on-the-fly using a downloadable asset. For example for the
common test distribution os-autoinst-distri-opensuse one could use
SCHEDULE=tests/boot/boot_to_desktop,tests/console/my_test for a much faster test execution that
can boot an existing system and only execute the intended test module.

https://github.com/os-autoinst/os-autoinst/blob/master/doc/backend_vars.asciidoc describes in detail
the mentioned test parameters and more. Please consult this full reference as well.

42.4.1. EXCLUDE_MODULES

If a job has the following schedule:

• boot/boot_to_desktop

• console/systemd_testsuite

• console/docker

The module console/docker can be excluded with:

openqa-clone-job --from https://openqa.opensuse.org --host https://openqa.opensuse.org
24 EXCLUDE_MODULES=docker

The schedule would be:

142

https://github.com/os-autoinst/os-autoinst-distri-opensuse
https://github.com/os-autoinst/os-autoinst/blob/master/doc/backend_vars.asciidoc

• boot/boot_to_desktop

• console/systemd_testsuite

NOTE Excluding modules that are not scheduled does not raise an error.

42.4.2. INCLUDE_MODULES

If a job has the following schedule:

• boot/boot_to_desktop

• console/systemd_testsuite

• console/docker

The module console/docker can be excluded with:

openqa-clone-job --from https://openqa.opensuse.org --host https://openqa.opensuse.org
24 INCLUDE_MODULES=boot_to_desktop,systemd_testsuite

The schedule would be:

• boot/boot_to_desktop

• console/systemd_testsuite

NOTE
Including modules that are not scheduled does not raise an error, but they are not
scheduled.

42.4.3. SCHEDULE

Additionally it is possible to define a custom schedule using the test variable SCHEDULE.

openqa-clone-job --from https://openqa.opensuse.org --host https://openqa.opensuse.org
24 SCHEDULE=tests/boot/boot_to_desktop,tests/console/consoletest_setup

NOTE Any existing test module within CASEDIR can be scheduled.

42.4.4. SCHEDULE + ASSET_<NR>_URL

Test modules can be defined and overridden on-the-fly using a downloadable asset (combining
ASSET_<NR>_URL and SCHEDULE).

For example one can schedule a job on a production instance with a custom schedule consisting of
two modules from the provided test distribution plus one test module which is defined dynamically
and downloaded as an asset from an external trusted download domain:

143

openqa-clone-job --from https://openqa.opensuse.org --host https://openqa.opensuse.org
24 SCHEDULE=tests/boot/boot_to_desktop,tests/console/consoletest_setup,foo,bar
ASSET_1_URL=https://example.org/my/test/bar.pm
ASSET_2_URL=https://example.org/my/test/foo.pm

NOTE

The asset number doesn’t affect the schedule order.
The test modules foo.pm and bar.pm will be downloaded into the root of the pool
directory where tests and assets are used by isotovideo. For this reason, to schedule
them, no path is needed.

A valid test module format looks like this:

use Mojo::Base 'consoletest';
use testapi;

sub run {
 select_console 'root-console';
 assert_script_run 'foo';
}

sub post_run_hook {}

For example this can be used in bug investigations or trying out new test modules which are hard
to test locally. The section "Asset handling" in the Users Guide describes how downloadable assets
can be specified. It is important to note that the specified asset is only downloaded once. New
versions must be supplied as new, unambiguous download target file names.

42.5. Triggering tests based on an any remote Git
refspec or open GitHub pull request
openQA also supports to trigger tests using test code from a pull request or any branch or Git
refspec. That means that code changes that are not yet available on a production instance of
openQA can be tested safely to ensure the code changes work as expected before merging the code
into a production repository and branch. This works by setting the CASEDIR parameter of os-autoinst
to a valid Git repository path including an optional branch/refspec specifier. NEEDLES_DIR can be set
in the same way to use custom needles. See the os-autoinst documentation for details.

144

https://github.com/os-autoinst/os-autoinst/blob/master/doc/backend_vars.asciidoc

NOTE

The openQA worker initializes CASEDIR and NEEDLES_DIR to point to repositories
provided by the openQA instance (usually under /var/lib/openqa/share/tests).

When the variables CASEDIR and NEEDLES_DIR are set, the behavior is as follows:

• If CASEDIR or NEEDLES_DIR is customized the customized location is used instead of
the default repository.

• If only one of CASEDIR or NEEDLES_DIR is customized the other variable will still be
initialized to point to the default repository.

• A relative NEEDLES_DIR is treated to be relative to the default CASEDIR (even if
CASEDIR is customized). To have it treated to be relative to the custom CASEDIR,
prefix the relative path with %CASEDIR%/. So specifying e.g.
CASEDIR=https://github.com/… and NEEDLES_DIR=%%CASEDIR%%/the-needles will
lead to %CASEDIR% being substituted with the path of the Git checkout created for
the custom CASEDIR. That results in needles found in https://github.com/…/tree/…/
the-needles to be used. Note that double %-signs are to avoid variable
substitution. When using curl, you need to escape the %-sign as %25 in addition.

A helper script openqa-clone-custom-git-refspec is available for convenience that supports some
combinations.

To clone one job within a remote instance based on an open github pull request the following
syntax can be used:

openqa-clone-custom-git-refspec $GITHUB_PR_URL $OPENQA_TEST_URL

For example:

openqa-clone-custom-git-refspec https://github.com/os-autoinst/os-autoinst-distri-
opensuse/pull/6649 https://openqa.opensuse.org/tests/839191

As noted above, customizing CASEDIR does not mean needles will be loaded from there, even if the
repository specified as CASEDIR contains needles. To load needles from that repository, it needs to be
specified as NEEDLES_DIR as described in the note above.

Keep in mind that if PRODUCTDIR is overwritten as well, it might not relate to the state of the specified
git refspec that is passed via the command line parameter to openqa-clone-custom-git-refspec or via
the PRODUCTDIR variable to openqa-clone-job. Both can still be used when overwriting PRODUCTDIR, but
special care must be taken if the schedule is modified (then it is safer to manually specify the
schedule via the SCHEDULE variable).

145

https://github.com/…/tree/…/the-needles
https://github.com/…/tree/…/the-needles

Chapter 43. Running openQA jobs as CI
checks
It is possible to run openQA jobs as CI checks of a repository, e.g. a test distribution or an arbitrary
repository containing software with openQA tests as part of the test suite.

43.1. Create and monitor openQA jobs from within the
CI runner
The easiest approach is to create and monitor openQA jobs from within the CI runner. To make this
easier, openqa-cli provides the schedule sub-command with the --monitor flag. This way you still
need an openQA instance to run tests (as they are not executed within the CI runner itself) but you
can also still conveniently view the test results on the openQA web UI.

An example using GitHub actions and the official container image we provide for openqa-cli can be
found in the example distributions' workflow.

NOTE

This example makes use of the SCENARIO_DEFINITIONS_YAML variable which allows
specifying scenario definitions in a way that is independent from openQA’s normal
scheduling tables. This feature is explained in further detail in the corresponding
users guide section.

It is also possible to create a GitHub workflow that will clone and monitor an openQA job which is
mentioned in the PR description or comment. The scripts repository contains a pre-defined GitHub
action for this. Checkout the documentation of the openqa-clone-and-monitor-job-from-pr script for
further information and an example configuration.

NOTE

These examples show how API credentials are supplied. It is important to note that
using on:pull_request would only work for PRs created on the main repository but
not for PRs created from forks. Therefore on:pull_request_target is used instead. To
still run the tests on the PR version the variables under
github.event.pull_request.head.* are utilized (instead of e.g. just $GITHUB_REF).

NOTE

Due to the use of on:pull_request_target the scenario definitions are read from the
main repository in this example. This is the conservative approach. To allow
scheduling jobs based on the PR version of the scenario definitions file one could
use e.g.
SCENARIO_DEFINITIONS_YAML_FILE=https://raw.githubusercontent.com/$GH_REPO/$GH_RE
F/.github/workflows/openqa.yml instead of - uses: actions/checkout@v3 and --param
-file SCENARIO_DEFINITIONS_YAML=scenario-definitions.yaml.

146

https://github.com/os-autoinst/os-autoinst-distri-example/blob/master/.github/workflows/openqa.yml
https://github.com/os-autoinst/os-autoinst-distri-example/blob/master/scenario-definitions.yaml
https://github.com/os-autoinst/scripts/blob/master/openqa-clone-and-monitor-job-from-pr

43.2. Use webhooks and status reporting APIs of
GitHub
This approach is so far specific to GitHub and is a bit more effort to setup than the approach
mentioned in the previous section. For this to work, GitHub needs to be able to inform openQA that
a PR has been created or updated and openQA needs to be able to inform GitHub about the result of
the jobs it ran. So authentication needs to be configured on both sides. On the upside, there is no
additional CI runner required and the authentication also works when a PR is created from a fork
repository branch which extra configuration.

The test scenarios for your repository need to be defined in the file scenario-definitions.yaml at the
root of your repository. Checkout the scenario definitions from the example distribution for an
example. You may append a parameter like SCENARIO_DEFINITIONS_YAML=path/of/yaml to the query
parameters of the webhook to change the lookup path of this file.

43.3. Run isotovideo directly in the CI runner
It is also possible to avoid using openQA at all and run the backend isotovideo directly within the CI
runner. This simplifies the setup as no openQA instance is needed but of course test results cannot
be examined using a web interface as usual. Checkout the README of the example test distribution
for more information.

43.3.1. Setup a GitHub access token for openQA

This setup is required for openQA to be able to report the status back to GitHub.

1. Open https://github.com/settings/tokens/new and create a new token. It needs at least the scope
"repo".

2. Add the previously created token to the web UI configuration file:

[secrets]
github_token = $token

3. Restart the web UI services.

IMPORTANT

The user the token has been created with needs at least "Write" permissions
to access the repository the CI checks should appear on (for instance by
being member of a team with that permissions). Otherwise, GitHub might
respond with a 404 response (weirdly not necessarily 403) when submitting
the CI check status.

43.3.2. Setup webhook on GitHub

This setup is required for GitHub to be able to inform openQA that a PR has been created or
updated.

147

https://github.com/os-autoinst/os-autoinst-distri-example/blob/master/scenario-definitions.yaml
https://github.com/os-autoinst/os-autoinst-distri-example/blob/main/README.md#local-testing-and-ci-environment
https://github.com/settings/tokens/new

1. Open https://github.com/$orga/$project/settings/hooks/new. You need to substitute the
placeholders $orga and $project with the corresponding value of the repository you want to add
CI checks to.

2. Add https://$user:$apikey:$apisecret@$openqa_host/api/v1/webhooks/product?
DISTRI=example&VERSION=0&FLAVOR=DVD&ARCH=x86_64&TEST=simple_boot as "Payload
URL". You need to substitute the placeholders with valid API credentials and hostname for your
openQA instance. If you don’t have an API key/secret then you can create one on
https://$openqa_host/api_keys. Make sure the casing of the user name is correct. The scheduling
parameters need to be adjusted to produce the wanted set of jobs from your scenario
definitions YAML file.

3. Select "application/json" as "Content type".

4. Add $user:$apikey:$apisecret as secret replacing placeholders again. You need to use the same
credentials as in step 2.

5. Keep SSL enabled. (Be sure your openQA instance is reachable via HTTPS.)

6. Select "Let me select individual events." and then "Pull requests".

7. Ensure "Active" is checked and confirm.

8. GitHub should now have been delivering a "ping" event. Checkout whether it could be
delivered. If you have gotten a 200 response then everything is setup correctly. Otherwise,
checkout the response of the delivery to investigate what is wrong.

148

https://github.com/$orga/$project/settings/hooks/new
https://$user:$apikey:$apisecret@$openqa_host/api/v1/webhooks/product?DISTRI=example&VERSION=0&FLAVOR=DVD&ARCH=x86_64&TEST=simple_boot
https://$user:$apikey:$apisecret@$openqa_host/api/v1/webhooks/product?DISTRI=example&VERSION=0&FLAVOR=DVD&ARCH=x86_64&TEST=simple_boot
https://$openqa_host/api_keys

Chapter 44. Integrating test results from
external systems
The openQA web UI is suitable as a test management and reporting platform. Next to the automated
openQA tests one can integrate test results from external systems or manual test results by selecting
a worker class without a worker assigned to it. The following call to openqa-cli creates a test job
with the name "my_manual_test" on a local openQA instance:

id=$(openqa-cli api -X post jobs test=my_manual_test worker_class=::manual | jq -r
.id)

As necessary the test can be set to an according status. To link to external test results a comment
can be added using the $id we have from the above call:

openqa-cli api -X post jobs/$id/comments text="Details on http://external.tests/$id"

After test completion an according result can be set, for example:

openqa-cli api -X post jobs/$id/set_done result=passed

Additional information can be provided on such jobs, e.g. clickable URLs pointing to other
resources in the settings or uploaded test reports and logs.

149

openQA test harness result
processing

150

Chapter 45. Introduction
From time to time, a test developer might want to use openQA to execute a test suite from a
different test harness than openQA, but still use openQA to setup test scenarios and prepare the
environment for a test suite run; for this case openQA has the ability to process logs from external
harnesses, and display the results integrated within the job results of the webUI.

One could say that a Test Harness is supported if its output is compatible with the available {parser-
format}, such as LTP, and also xUnit or JUnit, but this can be easily extended to include more
formats, such as RSpec or TAP.

The requirements to use this functionality, are quite simple:

• The test harness must produce a compatible format with supported {parser-format}.

• The test results can be uploaded via testapi::parse_extra_log within an openQA tests.

• The test results can also be uploaded via web Web Api endpoint.

openQA will store these results in its own internal format for easier presentation, but still will allow
the original file to be downloaded.

151

Chapter 46. Usage
If a test developer wishes to use the functional interface, after finishing the execution of the the
testing too, calling testapi::parse_extra_log with the location to a the file generated.

46.1. openQA test distribution
From within a common openQA test distribution, a developer can use parse_extra_log to upload a
text file that contains a supported test output:

script_run('prove --verbose --formatter=TAP::Formatter::JUnit t/28-logging.t > junit-
logging.xml');
parse_extra_log('XUnit','junit-logging.xml');

152

Chapter 47. Available parser formats
Current parser formats:

• OpenQA::Parser::Format::TAP,

• OpenQA::Parser::Format::JUnit

• OpenQA::Parser::Format::LTP

• OpenQA::Parser::Format::XUnit,

153

Chapter 48. Extending the parser

48.1. OOP Interface
The parser is a base class that acts as a serializer/deserializer for the elements inside of it, it allows
to be extended so new formats can be easily added.

The base class is exposing 4 Mojo::Collections available, according to what openQA would require
to map the results correctly, 1 extra collection is provided for arbitrary data that can be exposed.
The collections represents respectively: test results, test definition and test output.

48.2. Structured data
In structured data mode, elements of the collections are objects. They can be of any type, even
though subclassing or objects of type of OpenQA::Parser::Result are preferred.

One thing to keep in mind, is that in case deeply nested objects need to be parsed like hash of
hashes, array of hashes, they would need to subclass OpenQA::Parser::Result or
OpenQA::Parser::Results respectively.

As an example, JUnit format can be parsed this way:

154

use OpenQA::Parser::Format::JUnit;

my $parser_result = OpenQA::Parser::Format::JUnit->new->load("file.xml");

Now we can access to parsed tests as seen by openQA:

$parser_result->tests->each(sub {

 my $test = shift;
 print "Test name: ".$test->name;

});

my @all = $parser_result->tests->each;
my @tests = $parser->tests->search(name => qr/1_running_upstream_tests/);
my $first = $parser->tests->search(name => qr/1_running_upstream_tests/)->first();

my $binary_data = $parser->serialize();

Now, we can also store $binary_data and retrieve it later.

my $new_parser_from_binary = OpenQA::Parser::Format::JUnit->new-
>deserialize($binary_data);

thus this works as expected:
$new_parser_from_binary->tests->each(sub {

 my $test = shift;
 print "Test name: ".$test->name;

});

We can also serialize all to JSON

my $json_serialization = $parser->to_json;

save it and access it later

my $from_json = OpenQA::Parser::Format::JUnit->from_json($json_serialization);

48.3. openQA internal test result storage
It is important to know that openQA’s internal mapping for test results works operating almost
entirely on the filesystem, leaving only the test modules to be registered into the database, this
leads to the following relation: A test module’s name is used to create a file with details (details-
$testmodule.json), that will contain a reference to step details, which is a collection of references to
files, using a field "text" as tie in, and expecting a filename.

155

openQA client
There are two ways to interact with openQA as a user. The web UI and the REST API. In this guide
we will focus on the latter. You’ve probably already seen a few examples of its use with openqa-cli
earlier in the documentation.

Here we will start again from the very beginning to give you a more complete overview of its
capabilities. To get started all you need is an openQA instance with a few jobs and curl. Just replace
openqa.example.com in the examples below with the hostname of your openQA instance.

curl http://openqa.example.com/api/v1/jobs/overview

That one-liner will show you the latest jobs from the overview in JSON format. You could also
append various query parameters to filter the jobs further.

curl http://openqa.example.com/api/v1/jobs/overview?result=failed

But using curl directly can also get a bit clunky when the data you need to submit is more complex,
you want to store host and authentication information in config files, or just get the returned JSON
pretty printed.

For those cases openQA also contains a dedicated client to help you with that. It is called openqa-cli
and can usually be installed with an openQA-client package (the name will vary depending on your
Linux distribution).

openqa-cli api --host http://openqa.example.com jobs/overview result=failed

Our example above is quickly translated. The api subcommand of openqa-cli allows you to perform
arbitrary HTTP requests against the REST API. The path will automatically get the correct version
prefix applied (such as /api/v1), and query parameters can be passed along as key=value pairs.

156

Chapter 49. Help
The api subcommand is not the only one available and more will be added over time. To get a
complete list of all currently available subcommands you can use the --help option.

openqa-cli --help

And each subcommand also contains descriptions for all its available options, as well as many
common usage examples.

openqa-cli api --help

157

Chapter 50. Authentication
Not all REST endpoints are public, many will return a 403 Forbidden error if you try to access them
without proper credentials. The credentials (or API keys) are managed in the web UI, to which you
will need operator access.

Once you have acquired a valid key and secret you can store them in a config file or use them ad-
hoc from the command line. There are two config files openqa-cli will try, the global
/etc/openqa/client.conf, and your personal ~/.config/openqa/client.conf. The format is the same
for both.

[openqa.example.com]
key = 1234567890ABCDEF
secret = ABCDEF1234567890

For ad-hoc use all openqa-cli subcommands use the --apikey and --apisecret options. Which will
override whatever the config files may contain.

openqa-cli api --host http://openqa.example.com --apikey 1234567890ABCDEF \
 --apisecret ABCDEF1234567890 -X POST jobs/2/comments text=hello

50.1. Personal access token
The authentication mechanism used by openqa-cli was specifically designed to allow secure access
to the REST API even via unencrypted HTTP connections. But when your openQA server has been
deployed with HTTPS (and for HTTP connections originating from localhost) you can also use plain
old Basic authentication with a personal access token. That allows for almost any HTTP client to be
used with openQA.

This access token is made up of your username, and the same key/secret combo the openqa-cli
authentication mechanism uses. All you have to do is combine them as USERNAME:KEY:SECRET and you
can use curl to access operator and admin REST endpoints (depending on user privileges of course).

curl -u arthur:1234567890ABCDEF:ABCDEF1234567890 -X DELETE \
 https://openqa.example.com/api/v1/assets/1

158

Chapter 51. Features
Many of the openqa-cli api features are designed to be similar to other commonly used tools like
curl. It helps a lot if you are already familiar with the HTTP protocol and JSON. Both will be
referenced extensively.

51.1. HTTP Methods
The --method option (or -X for short) allows you to change the HTTP request method from GET to
something else. In the openQA API you will most commonly encounter POST, PUT and DELETE. For
example to start testing a new ISO image you would use POST.

openqa-cli api --host http://openqa.example.com -X POST isos \
 ISO=openSUSE-Factory-NET-x86_64-Build0053-Media.iso DISTRI=opensuse \
 VERSION=Factory FLAVOR=NET ARCH=x86_64 BUILD=0053

51.2. HTTP Headers
With the --header option (or -a for short) you can add one or more custom HTTP headers to your
request. This feature is currently not used much, but can be handy if for example the REST
endpoint you are using supports content negotiation.

openqa-cli api --host http://openqa.example.com -a 'Accept: application/json' \
 jobs/overview

51.3. HTTP Body
To change the HTTP request body there are multiple options available. The simplest being --data
(or -d for short), which allows you to use a plain string as request body. This can be useful for
example to change the group id of a job.

openqa-cli api --host http://openqa.example.com -X PUT jobs/1 \
 --data '{"group_id":2}'

With the --data-file option (or -D for short) you can also use a file instead.

openqa-cli api --host http://openqa.example.com -X PUT jobs/1 \
 --data-file ./test.json

Or just pipe the data to openqa-cli.

159

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/JSON

echo '{"group_id":2}' | openqa-cli api --host http://openqa.example.com -X PUT \
 jobs/1

51.4. Forms
Most data you pass to the openQA API will be key/value form parameters. Either in the query string,
or encoded as application/x-www-form-urlencoded HTTP request body. But you don’t have to worry
about this too much, because openqa-cli api knows when to use which format automatically, you
just provide the key/value pairs.

Form parameters are most commonly passed as additional arguments after the path. For example
to post a comment to a job.

openqa-cli api --host http://openqa.example.com -X POST jobs/2/comments text=abc

This value can also be quoted to include whitespace characters.

openqa-cli api --host http://openqa.example.com -X POST jobs/2/comments \
 text="Hello openQA!"

And you can use interpolation to include files.

openqa-cli api --host http://openqa.example.com -X POST jobs/2/comments \
 text="$(cat ./comment.markdown)"

Alternatively you can also use the --form option (or -f for short) to provide all form parameters in
JSON format. Here you would reuse the HTTP body options, such as --data and --data-file, to pass
the JSON document to be turned into form parameters.

openqa-cli api --host http://openqa.example.com --form --data '{"text":"abc"}' \
 -X POST jobs/2/comments

51.5. JSON
The primary data exchange format in the openQA API is JSON. And you will even see error
messages in JSON format most of the time.

{"error":"no api key","error_status":403}

By default the returned JSON is often compressed, for better performance, and can be hard to read
if the response gets larger. But if you add the --pretty option (or -p for short), openqa-cli can
reformat it for you.

160

openqa-cli api --host http://openqa.example.com --pretty jobs/overview

The JSON will be re-encoded with newlines and indentation for much better readability.

{
 "error" : "no api key",
 "error_status" : 403
}

The --json option (or -j for short) can be used to set a Content-Type: application/json request
header. Whenever you need to upload a JSON document.

openqa-cli api --host http://openqa.example.com -X PUT jobs/1 --json \
 --data '{"group_id":2}'

51.6. Unicode
Just use a UTF-8 locale for your terminal and Unicode will pretty much just work.

openqa-cli api --host http://openqa.example.com -X POST jobs/2/comments \
 text="I ♥ Unicode"

JSON documents are always expected to be UTF-8 encoded.

openqa-cli api --host http://openqa.example.com --form \
 --data '{"text":"I ♥ Unicode"}' -X POST jobobs/407/comments \
 -X POST jobs/2/comments

51.7. Host shortcuts
Aside from the --host option, there are also a few shortcuts available. If you leave out the --host
option completely, the default value will be http://localhost, which is very convenient for
debugging purposes.

openqa-cli api jobs/overview

And organisations that contribute to openQA and are invested in the project can also get their very
own personalised shortcuts. Currently we have --osd for http://openqa.suse.de, and --o3 for
openqa.opensuse.org.

161

http://localhost
http://openqa.suse.de

openqa-cli api --o3 jobs/overview

51.8. Debugging
Often times just seeing the HTTP response body might not be enough to debug a problem. With the
--verbose option (or -v for short) you can also get additional information printed.

openqa-cli api --host http://openqa.example.com --verbose -X POST \
 jobs/407/comments text="Hello openQA!"

This includes the HTTP response status line, as well as headers.

HTTP/1.1 403 Forbidden
Content-Type: application/json;charset=UTF-8
Strict-Transport-Security: max-age=31536000; includeSubDomains
Server: Mojolicious (Perl)
Content-Length: 41
Date: Wed, 29 Apr 2020 12:03:11 GMT

{"error":"no api key","error_status":403}

And if that is not enough, you can experiment with the MOJO_CLIENT_DEBUG environment variable.

MOJO_CLIENT_DEBUG=1 openqa-cli api --host http://openqa.example.com -X POST \
 jobs/407/comments text="Hello openQA!"

It will activate a debug feature in the Mojolicious framework, which openQA uses internally, and
show everything that is being sent or received.

POST /api/v1/jobs/407/comments HTTP/1.1
Content-Length: 20
User-Agent: Mojolicious (Perl)
Content-Type: application/x-www-form-urlencoded
Host: openqa.example.com
X-API-Microtime: 1588153057
X-API-Hash: 8a73f6c37920921d52a8b5352ab417d923ee979e
Accept-Encoding: gzip
X-API-Key: AAEAC3E147A1EEE0
Accept: application/json

text=Hello+openQA%21

Just be aware that this is a feature the openQA team does not control, and the exact output as well
as how it escapes control characters will change a bit over time.

162

Chapter 52. Archive mode
With the archive subcommand of openqa-cli you can download all the assets and test results of a
job for archiving or debugging purposes.

openqa-cli archive --host http://openqa.example.com 408 /tmp/openqa_job_408

Thumbnails are not included by default, but can be added with the --with-thumbnails option (or -t
for short).

openqa-cli archive --host http://openqa.example.com --with-thumbnails \
 408 ~/openqa_job_408

163

openQA pitfalls

164

Chapter 53. Needle editing
• If a new needle is created based on a failed test, the new needle will not be listed in old tests.

However, when opening the needle editor, a warning about the new needle will be shown and it
can be selected as base.

• If an existing needle is updated with a new image or different areas, the old test will display the
new needle which might be confusing.

• If a needle is deleted, old tests may display an error when viewing them in the web UI.

165

Chapter 54. 403 messages when using scripts
• If you come across messages displaying ERROR: 403 - Forbidden, make sure that the correct API

key is present in client.conf file.

• If you are using a hostname other than localhost, pass --host foo to the script.

• If you are using fake authentication method, and the message says also "api key expired" you
can simply logout and log in again in the webUI and the expiration will be automatically
updated

166

Chapter 55. Mixed production and
development environment
There are few things to take into account when running a development version and a packaged
version of openqa:

If the setup for the development scenario involves sharing /var/lib/openqa, it would be wise to
have a shared group openqa, that will have write and execute permissions over said directory, so
that geekotest user and the normal development user can share the environment without
problems.

This approach will lead to a problem when the openqa package is updated, since the directory
permissions will be changed again, nothing a chmod -R g+rwx /var/lib/openqa/ and chgrp -R openqa
/var/lib/openqa can not fix.

167

Chapter 56. Performance impact
openQA workers can cause high I/O load, especially when creating VM snapshots. The impact
therefore gets more severe when MAKETESTSNAPSHOTS is enabled. should not impact the stability of
openQA jobs but can increase job execution time. If you run jobs on a machine where
responsiveness of other services matter, for example your desktop machine, consider patching the
IOSchedulingPriority of a workers service file as described in the systemd documentation, for
example set IOSchedulingPriority=7 for the lowest priority. If not available then you can try to
execute the worker processes with ionice to reduce the risk of your system becoming significantly
impacted by snapshot creation. Loading VM snapshots can also have an impact on SUT behavior as
the execution of the first step after loading a snapshot might be delayed. This can lead to problems
if the executed tests do not foresee an appropriate timeout margin.

On some less powerful systems (like Raspberry Pi), reducing screenshots size with optipng may take
significant amount of time. In this case, you can switch to pngquant which is significantly faster, but
uses lossy compression. To do that, install pngquant package and set USE_PNGQUANT=1 in worker or job
settings.

168

https://www.freedesktop.org/software/systemd/man/systemd.exec.html#IOSchedulingPriority=

Chapter 57. DB migration from SQlite to
postgreSQL
As a first step to start using postgreSQL, please, configure postgreSQL database according to the
postgreSQL setup guide

To migrate api keys run following commands:

• Export data from the SQlite db:

sqlite3 db.sqlite -csv -separator ',' 'select * from api_keys;' > apikeys.csv

Note: SQlite database file is located in /var/lib/openqa/db by default.

• Import data to the postgreSQL

openqa is the postgreSQL database name and apikeys.csv is api keys export file
psql -U postgres -d openqa -c "copy api_keys from 'apikeys.csv' with (format csv);"

In case you need to migrate job groups, test suites, use openqa-dump-templates and openqa-load-
templates scripts accordingly.

169

Chapter 58. Steps to debug developer mode
setup
This is basically a checklist to go through in case the developer mode is broken in your setup (e.g.
you are getting the error message unable to upgrade ws to command server):

1. Be sure to have everything up to date. That includes relevant packages on the machine hosting
the web UI and on the worker.

2. Ensure the firewall configuration steps from https://github.com/os-autoinst/os-autoinst/blob/
master/script/os-autoinst-setup-multi-machine have been applied to the worker machine

3. Check whether the web browser can reach the livehandler daemon. Go to a running test and
open the live view. Then open the JavaScript console of the web browser. If it contains messages
like Received message via ws proxy: … the livehandler daemon can be reached. Otherwise, try
the following sub-steps:

a. The installation guide has been updated to cover the developer mode. In case you installed
your instance before the developer mode has been introduced, make sure that the Apache
module rewrite is enabled (via a2enmod rewrite). Also be sure the vhost configuration looks
like the one found in the openQA Git repository (especially the part for the reverse proxies).

b. Check whether openqa-livehandler.service is running. It is supposed to be run on the same
machine as the web UI and should actually be started automatically as a dependency of
openqa-webui.service.

4. Check whether the livehandler can reach the os-autoinst command server. Go to a running test
and open the live view. Then open the JavaScript console of the web browser. If it contains
messages like Received message via ws proxy: {…,"type":"info","what":"cmdsrvmsg"} the os-
autoinst command server can be reached. Otherwise there should be at least a message like
Received message via ws proxy: {"what":"connecting to os-autoinst command server at
ws:\/\/host:20053\/xhB84lUuPlMfhDEF\/ws",…} which contains the URL the livehandler is
attempting to query. In this case try the following sub-steps:

a. If the host is wrong, add WORKER_HOSTNAME = correcthost to the worker configuration. The
worker should then tell the web UI that it is reachable via correcthost resulting in a correct
URL for the os-autoinst command server. Be sure the setting appears after the [global]
section header.

b. It might also be the case that the firewall is blocking the HTTP/websocket connection on the
required port. The required port is QEMUPORT plus 1. By default, QEMUPORT is set to
$worker_instance_number * 10 + 20002 by the worker. So to cover worker slots from 1 to 10
one would by default require the ports 20013, 20023, … and 20103.

5. It can also help to look at the architecture diagram which shows which component needs access
to which other components and the ports used by default.

170

https://github.com/os-autoinst/os-autoinst/blob/master/script/os-autoinst-setup-multi-machine
https://github.com/os-autoinst/os-autoinst/blob/master/script/os-autoinst-setup-multi-machine
images/architecture.svg

Networking in openQA
For tests using the QEMU backend the networking type used is controlled by the NICTYPE variable. If
unset or empty NICTYPE defaults to user, i.e. QEMU User Networking which requires no further
configuration.

For more advanced setups or tests that require multiple jobs to be in the same networking the TAP
or VDE based modes can be used.

Other backends can be treated just the same as bare-metal setups. Tests can be triggered in parallel
same as for QEMU based ones and synchronization primitives can be used. For the physical
network according separation needs to be ensured externally where needed as means for machines
to be able to access each other.

171

Chapter 59. QEMU User Networking
With QEMU user networking each jobs gets its own isolated network with TCP and UDP routed to
the outside. DHCP is provided by QEMU. The MAC address of the machine can be controlled with
the NICMAC variable. If not set, it is 52:54:00:12:34:56.

172

http://wiki.qemu.org/Documentation/Networking#User_Networking_.28SLIRP.29

Chapter 60. TAP Based Network
os-autoinst can connect QEMU to TAP devices of the host system to leverage advanced network
setups provided by the host by setting NICTYPE=tap.

The TAP device to use can be configured with the TAPDEV variable. If not defined, it is automatically
set to "tap" + ($worker_instance - 1), i.e. worker1 uses tap0, worker 2 uses tap1 and so on.

For multiple networks per job (see NETWORKS variable), the following numbering scheme is used:

worker1: tap0 tap64 tap128 ...
worker2: tap1 tap65 tap129 ...
worker3: tap2 tap66 tap130 ...
...

The MAC address of each virtual NIC is controlled by the NICMAC variable or automatically computed
from $worker_id if not set.

In TAP mode the system administrator is expected to configure the network, required internet
access, etc. on the host as described in the next section.

60.1. Multi-machine test setup
The complete multi-machine test setup can be provided from the script os-autoinst-setup-multi-
machine provided by "os-autoinst". The script can be also found online on https://github.com/os-
autoinst/os-autoinst/blob/master/script/os-autoinst-setup-multi-machine

The configuration is applicable for openSUSE and will use Open vSwitch for virtual switch, firewalld
(or SuSEfirewall2 for older versions) for NAT and wicked or NetworkManager as network manager.
Keep in mind that a firewall is not strictly necessary for operation. The operation without firewall is
not covered in all necessary details in this documentation.

NOTE
Another way to setup the environment with iptables and firewalld is described on
the Fedora wiki.

NOTE
Alternatively salt-states-openqa contains necessities to establish such a setup and
configure it for all workers with the tap worker class. They also cover GRE tunnels
(that are explained in the next section).

The script os-autoinst-setup-multi-machine can be run like this:

specify the number of test VMs to run on this host
instances=30 bash -x $(which os-autoinst-setup-multi-machine)

173

https://github.com/os-autoinst/os-autoinst/blob/master/script/os-autoinst-setup-multi-machine
https://github.com/os-autoinst/os-autoinst/blob/master/script/os-autoinst-setup-multi-machine
https://fedoraproject.org/wiki/OpenQA_advanced_network_guide
https://github.com/os-autoinst/salt-states-openqa

60.1.1. What os-autoinst-setup-multi-machine does

Set up Open vSwitch

The script will install and configure Open vSwitch as well as a service called os-autoinst-
openvswitch.service.

NOTE

os-autoinst-openvswitch.service is a support service that sets the vlan number of
Open vSwitch ports based on NICVLAN variable - this separates the groups of tests
from each other. The NICVLAN variable is dynamically assigned by the openQA
scheduler.

The name of the bridge (default: br1) will be set in /etc/sysconfig/os-autoinst-openvswitch.

Configure virtual interfaces

The script will add the bridge device and the tap devices for every multi-machine worker instance.

NOTE

The bridge device will also call a script at /etc/wicked/scripts/gre_tunnel_preup.sh
on PRE_UP. This script needs manual touch if you want to set up multiple multi-
machine worker hosts. Refer to the GRE tunnels section below for further
information.

Configure NAT with firewalld

The required firewall rules for masquerading (NAT) and zone configuration for the trusted zone
will be set up. The bridge devices will be added to the zone. IP-Forwarding will be enabled.

show the firewall configuration
firewall-cmd --list-all-zones

60.1.2. What is left to do after running os-autoinst-setup-multi-machine

GRE tunnels

By default all multi-machine workers have to be on a single physical machine. You can join multiple
physical machines and its OVS bridges together by a GRE tunnel.

If the workers with TAP capability are spread across multiple hosts, the network must be
connected. See Open vSwitch documentation for details.

Create a gre_tunnel_preup script (change the remote_ip value correspondingly on both hosts):

174

http://openvswitch.org/support/config-cookbooks/port-tunneling/

cat > /etc/wicked/scripts/gre_tunnel_preup.sh <<EOF
#!/bin/sh
action="$1"
bridge="$2"
ovs-vsctl set bridge $bridge rstp_enable=true
ovs-vsctl --may-exist add-port $bridge gre1 -- set interface gre1 type=gre
options:remote_ip=<IP address of other host>
EOF

And call it by PRE_UP_SCRIPT="wicked:gre_tunnel_preup.sh" entry:

/etc/sysconfig/network/ifcfg-br1
<..>
PRE_UP_SCRIPT="wicked:gre_tunnel_preup.sh"

Ensure to make gre_tunnel_preup.sh executable.

NOTE

When using GRE tunnels keep in mind that virtual machines inside the ovs bridges
have to use MTU=1458 for their physical interfaces (eth0, eth1). If you are using
support_server/setup.pm the MTU will be set automatically to that value on
support_server itself and it does MTU advertisement for DHCP clients as well.

Configure openQA workers

Allow worker instances to run multi-machine jobs by modifying the worker configuration:

[global]
WORKER_CLASS = qemu_x86_64,tap

NOTE
The number of tap devices should correspond to the number of the running worker
instances. For example, if you have set up 3 worker instances, the same number of
tap devices should be configured.

Enable worker instances to be started on system boot:

systemctl enable openqa-worker@{1..3}

60.2. Verify the setup
Simply run a MM test scenario. For openSUSE, you can find many relevant tests on o3, e.g. look for
networking-related tests like ping_server/ping_client or wicked_basic_ref/wicked_basic_sut.

To test GRE tunnels, you may want to change the jobs worker classes so the different jobs are
executed on different workers. So you could call openqa-clone-job like this:

175

https://openqa.opensuse.org

openqa-clone-job \
 --skip-chained-deps \ # assuming assets are present
 --max-depth 0 \ # clone the entire parallel cluster
 --within-instance # create new jobs on the same
instance
 https://openqa.opensuse.org/tests/3886213 \ # arbitrary job in cluster to clone
 _GROUP=0 BUILD+=test-mm-setup \ # avoid interfering with production
jobs
 WORKER_CLASS:wicked_basic_ref+=,worker_foo \ # ensure one job runs on `worker_foo`
 WORKER_CLASS:wicked_basic_sut+=,worker_bar # ensure other job runs on
`worker_bar`

Also be sure to reboot the worker host to make sure the setup is actually persistent.

60.2.1. Start test VMs manually

You may also start VMs manually to verify the setup.

First, download a suitable image and launch a VM in the same way os-autoinst would do for MM
jobs:

wget http://download.opensuse.org/tumbleweed/appliances/openSUSE-Tumbleweed-Minimal-
VM.x86_64-Cloud.qcow2
qemu-system-x86_64 -m 2048 -enable-kvm -vnc :42 -snapshot \
 -netdev tap,id=qanet0,ifname=tap40,script=no,downscript=no \
 -device virtio-net,netdev=qanet0,mac=52:54:00:13:0b:4a \
 openSUSE-Tumbleweed-Minimal-VM.x86_64-Cloud.qcow2

The image used here is of course just an example. You need to make sure to assign a unique MAC
address (e.g. by adjusting the last two figures in the example; this will not conflict with MAC
addresses used by os-autoinst) and use a tap device not used at the same time by a SUT-VM.

Within the VM configure the network like this (you may need to adjust concrete IP addresses,
subnets and interface names):

ip link set dev eth0 up mtu 1380
ip a add dev eth0 10.0.2.15/24
ip r add default via 10.0.2.2
echo 'nameserver 8.8.8.8' > /etc/resolv.conf

The MTU is chosen in accordance with what the openSUSE test distribution uses for MM tests and
should be below the MTU set on the Open vSwitch bridge device (e.g. via os-autoinst-setup-multi-
machine).

After this it should be possible to reach other hosts. You may also launch a 2nd VM to see whether
the VMs can talk to each other. You may conduct ping tests similar to the ping_client test
mentioned in the previous section (see the utility function in openSUSE tests for details). When

176

https://github.com/os-autoinst/os-autoinst-distri-opensuse/blob/cc3a5b32527c4c8bb810c8bce9b1449a891ef74b/lib/utils.pm#L2901

running ping you can add/remove machines to/from the GRE network to bisect problematic
hosts/connections (via ovs-vsctl add-port … and ovs-vsctl del-port …).

60.3. Debugging Open vSwitch Configuration
Boot sequence with wicked (version 0.6.23 and newer):

1. openvswitch (as above)

2. wicked - creates the bridge br1 and tap devices, adds tap devices to the bridge,

3. firewalld (or SuSEfirewall2 in older setups)

4. os-autoinst-openvswitch - installs openflow rules, handles vlan assignment

The configuration and operation can be checked with the following commands:

cat /proc/sys/net/ipv4/conf/{br1,eth0}/forwarding # check whether IP forwarding is
enabled
ovs-vsctl show # shows the bridge br1, the tap devices are assigned to it
ovs-ofctl dump-flows br1 # shows the rules installed by os-autoinst-openvswitch in
table=0
ovs-dpctl show # show basic info on all datapaths
ovs-dpctl dump-flows # displays flows in datapaths
ovs-appctl rstp/show # show rstp information
ovs-appctl fdb/show br1 # show MAC address table

When everything is ok and the machines are able to communicate, the ovs-vsctl should show
something like the following:

Bridge "br0"
 Port "br0"
 Interface "br0"
 type: internal
 Port "tap0"
 Interface "tap0"
 Port "tap1"
 tag: 1
 Interface "tap1"
 Port "tap2"
 tag: 1
 Interface "tap2"
 ovs_version: "2.11.1"

NOTE
Notice the tag numbers are assigned to tap1 and tap2. They should have the same
number.

177

NOTE
If the balance of the tap devices is wrong in the worker configuration, the tag
cannot be assigned and the communication will be broken.

To list the rules which are effectively configured in the underlying netfilter (nftables or iptables)
use one of the following commands depending on which netfilter is used.

NOTE
Whether firewalld is using nftables or iptables is determined by the setting
FirewallBackend in /etc/firewalld/firewalld.conf. SuSEfirewall2 is always using
iptables.

nft list tables # list all tables
nft list table firewalld # list all rules in the specified table

iptables --list --verbose # list all rules with package counts

Check the flow of packets over the network:

• packets from tapX to br1 create additional rules in table=1

• packets from br1 to tapX increase packet counts in table=1

• empty output indicates a problem with os-autoinst-openvswitch service

• zero packet count or missing rules in table=1 indicate problem with tap devices

As long as the SUT has access to external network, there should be a non-zero packet count in the
forward chain between the br1 and external interface.

NOTE
To list the package count when nftables is used one needed to use counters (which
can be added to existing rules).

60.4. Debugging GRE tunnels and MTU sizes

60.4.1. Initial setup for all experiments

Enable ip forwarding
sysctl -w net.ipv4.ip_forward=1
sysctl -w net.ipv6.conf.all.forwarding=1
Install and enable openvswitch
zypper in openvswitch3
systemctl enable --now openvswitch

Host Network address Bridge address Remote IP

A 192.0.2.1/24 192.168.42.1/24 192.0.2.2

B 192.0.2.2/24 192.168.43.1/24 192.0.2.1

178

https://wiki.nftables.org/wiki-nftables/index.php/Counters
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/configuring_and_managing_networking/getting-started-with-nftables_configuring-and-managing-networking#adding-a-counter-to-an-existing-rule_debugging-nftables-rules

NOTE
instead of having two /24 networks, it is also possible to assign addresses from one
bigger network (which have the benefit of not needing explicit route assignment).

60.4.2. Simple scenario

Two servers with a single bridge on each side connected with GRE tunnel.

Create bridge and tunnel
nmcli con add type bridge con.int br0 bridge.stp yes ipv4.method manual ipv4.address
"$bridge_address" ipv4.routes 192.168.42.0/23
nmcli con add type ip-tunnel mode gretap con.int gre1 master br0 remote "$remote_ip"

Test the tunnel with ping
-M do -- prohibit fragmentation
-s xxxx -- set packet size

ping -c 3 -M do -s 1300 192.168.42.1
ping -c 3 -M do -s 1300 192.168.43.1

60.4.3. Scenario with openvswitch

Two servers with a one virtual bridge connected with GRE tunnel.

Create bridge, port and interface
nmcli con add type ovs-bridge con.int br0 ovs-bridge.rstp-enable yes
nmcli con add type ovs-port con.int br0 con.master br0
nmcli con add type ovs-interface con.int br0 con.master br0 ipv4.method manual
ipv4.address "$bridge_address" ipv4.routes 192.168.42.0/23

Create GRE tunnel
nmcli con add type ovs-port con.int gre1 con.master br0
nmcli con add type ip-tunnel mode gretap con.int gre1 master gre1 remote "$remote_ip"

Test the tunnel
ping -c 3 -M do -s 1300 192.168.42.1
ping -c 3 -M do -s 1300 192.168.43.1

179

ovs-vsctl show
de1f31e9-1b51-4cc3-954a-4e037191ac07
 Bridge br0
 Port br0
 Interface br0
 type: internal
 Port gre1
 Interface gre1
 type: system
 ovs_version: "3.1.0"

60.4.4. GRE tunnel made in openvswitch

openvswitch uses flow-based GRE tunneling, i.e. one interface gre_sys for all tunnels, the tunnel can
be created by ovs-vsctl. After that, everything works as expected.

Create bridge, port and interface
nmcli con add type ovs-bridge con.int br0 ovs-bridge.rstp-enable yes
nmcli con add type ovs-port con.int br0 con.master br0
nmcli con add type ovs-interface con.int br0 con.master br0 ipv4.method manual
ipv4.address "$bridge_address" ipv4.routes 192.168.42.0/23

Create GRE tunnel
ovs-vsctl add-port br0 gre1 -- set interface gre1 type=gre options:remote_ip=
"$remote_ip"

Test the tunnel
ping -c 3 -M do -s 1300 192.168.42.1
ping -c 3 -M do -s 1300 192.168.43.1

ovs-vsctl show
de1f31e9-1b51-4cc3-954a-4e037191ac07
 Bridge br0
 Port br0
 Interface br0
 type: internal
 Port gre1
 Interface gre1
 type: gre
 options: {remote_ip="192.0.2.2"}
 ovs_version: "3.1.0"

180

Chapter 61. VDE Based Network
Virtual Distributed Ethernet provides a software switch that runs in user space. It allows to connect
several QEMU instances without affecting the system’s network configuration.

The openQA workers need a vde_switch instance running. The workers reconfigure the switch as
needed by the job.

61.1. Basic, Single Machine Tests
To start with a basic configuration like QEMU user mode networking, create a machine with the
following settings:

• VDE_SOCKETDIR=/run/openqa

• NICTYPE=vde

• NICVLAN=0

Start the switch and user mode networking:

systemctl enable --now openqa-vde_switch
systemctl enable --now openqa-slirpvde

With this setting all jobs on the same host would be in the same network and share the same SLIRP
instance.

181

openQA developer guide

182

Chapter 62. Introduction
openQA is an automated test tool that makes it possible to test the whole installation process of an
operating system. It’s free software released under the GPLv2 license. The source code and
documentation are hosted in the os-autoinst organization on GitHub.

This document provides the information needed to start contributing to the openQA development
improving the tool, fixing bugs and implementing new features. For information about writing or
improving openQA tests, refer to the Tests Developer Guide. In both documents it’s assumed that
the reader is already familiar with openQA and has already read the Starter Guide. All those
documents are available at the official repository.

183

http://www.gnu.org/licenses/gpl-2.0.html
https://github.com/os-autoinst
https://github.com/os-autoinst/openQA

Chapter 63. Development guidelines
As mentioned, the central point of development is the os-autoinst organization on GitHub where
several repositories can be found.

63.1. Repository URLs
• os-autoinst: https://github.com/os-autoinst/os-autoinst

◦ the "backend" (thing that executes tests and starts/controls the SUT e.g. using QEMU)

• openQA: https://github.com/os-autoinst/openQA

◦ mainly the web UI and accompanying daemons like the scheduler

◦ the worker (thing that starts the backend and uploads results to the web UI)

◦ documentation

◦ miscellaneous support scripts

• test distribution: e.g. https://github.com/os-autoinst/os-autoinst-distri-opensuse for openSUSE

◦ the actual tests, in case of os-autoinst-distri-opensuse conducted on
http://openqa.opensuse.org

• needles: e.g. https://github.com/os-autoinst/os-autoinst-needles-opensuse for openSUSE

◦ reference images if not already included in the test distribution

• empty example test distribution: https://github.com/os-autoinst/os-autoinst-distri-example

◦ meant to be used to start writing tests (and creating the corresponding needles) from scratch
for a new operating system

As in most projects hosted on GitHub, pull request are always welcome and are the right way to
contribute improvements and fixes.

63.2. Rules for commits
• Every commit is checked in CI as soon as you create a pull request, but you should run the tidy

scripts locally, i.e. before every commit call:

make tidy

to ensure your Perl and JavaScript code changes are consistent with the style rules.

• All tests are passed. This is ensured by a CI system. You can also run local tests in your
development environment to verify everything works as expected, see Conducting tests)

• For git commit messages use the rules stated on How to Write a Git Commit Message as a
reference

• Every pull request is reviewed in a peer review to give feedback on possible implications and
how we can help each other to improve

184

https://github.com/os-autoinst
https://github.com/os-autoinst/os-autoinst
https://github.com/os-autoinst/openQA
https://github.com/os-autoinst/os-autoinst-distri-opensuse
http://openqa.opensuse.org
https://github.com/os-autoinst/os-autoinst-needles-opensuse
https://github.com/os-autoinst/os-autoinst-distri-example
https://circleci.com/dashboard
http://chris.beams.io/posts/git-commit/

If this is too much hassle for you feel free to provide incomplete pull requests for consideration or
create an issue with a code change proposal.

63.3. Code style suggestions
• In Perl files:

◦ Sort the use statements in this order from top to bottom:

▪ strict, warnings or other modules that provide static checks

▪ All external modules and from "lib" folder

▪ use FindBin; use lib "$FindBin::Bin/lib"; or similar to resolve internal modules

▪ Internal test modules which provide early checks before other modules

▪ Other internal test modules

◦ When using signatures try to follow these rules:

▪ Activate the feature with modules we already use if possible, e.g. use Mojo::Base
'Something', -signatures;

▪ Use positional parameters whenever possible, e.g. sub foo ($first, $second) {

▪ Use default values when appropriate, e.g. sub foo ($first, $second = 'some value') {

▪ Use slurpy parameters when appropriate (hash and array), e.g. sub foo ($first, @more)
{

▪ Use nameless parameters when appropriate (very uncommon), e.g. sub foo ($first, $,
$third) {

▪ Do not get too creative with computational default values, e.g. sub foo ($first, $second
= rand($first)) {

▪ Do not combine sub attributes with signatures (requires Perl 5.28+), e.g. sub foo :lvalue
($first) {

185

https://perldoc.perl.org/perlsub#Signatures

Chapter 64. Getting involved into
development
Developers willing to get really involved into the development of openQA or people interested in
following the always-changing roadmap should take a look at the openQAv3 project in openSUSE’s
project management tool. This Redmine instance is used to coordinate the main development effort
organizing the existing issues (bugs and desired features) into 'target versions'.

Future improvements groups features that are in the developers' and users' wish list but that have
little chances to be addressed in the short term, normally because they are out of the current scope
of the development. Developers looking for a place to start contributing are encouraged to simply
go to that list and assign any open issue to themselves.

openQA and os-autoinst repositories also include test suites aimed at preventing bugs and
regressions in the software. codecov is configured in the repositories to encourage contributors to
raise the tests coverage with every commit and pull request. New features and bug fixes are
expected to be backed with the corresponding tests.

186

https://progress.opensuse.org/projects/openqav3
https://progress.opensuse.org/versions/490
https://codecov.io/

Chapter 65. Technologies
Everything in openQA, from os-autoinst to the web frontend and from the tests to the support
scripts is written in Perl. So having some basic knowledge about that language is really desirable in
order to understand and develop openQA. Of course, in addition to bare Perl, several libraries and
additional tools are required. The easiest way to install all needed dependencies is using the
available os-autoinst and openQA packages, as described in the Installation Guide.

In the case of os-autoinst, only a few CPAN modules are required. Basically Carp::Always, Data::Dump.
JSON and YAML. On the other hand, several external tools are needed including QEMU, Tesseract and
OptiPNG. Last but not least, the OpenCV library is the core of the openQA image matching
mechanism, so it must be available on the system.

The openQA package is built on top of Mojolicious, an excellent Perl framework for web
development that will be extremely familiar to developers coming from other modern web
frameworks like Sinatra and that have nice and comprehensive documentation available at its
home page.

In addition to Mojolicious and its dependencies, several other CPAN modules are required by the
openQA package. See Dependencies below.

openQA relies on PostgreSQL to store the information. It used to support SQLite, but that is no
longer possible.

As stated in the previous section, every feature implemented in both packages should be backed by
proper tests. Test::Most is used to implement those tests. As usual, tests are located under the /t/
directory. In the openQA package, one of the tests consists of a call to Perltidy to ensure that the
contributed code follows the most common Perl style conventions.

187

http://www.cpan.org/
http://wiki.qemu.org/Main_Page
https://code.google.com/p/tesseract-ocr/
http://optipng.sourceforge.net/
http://opencv.org/
http://mojolicio.us
http://perldoc.perl.org/Test/Most.html
http://perltidy.sourceforge.net/

Chapter 66. Folder structure
Meaning and purpose of the most important folders within openQA are:

public

Static assets published to users over the web UI or API

t

Self-tests of openQA

assets

3rd party JavaScript and CSS files

docs

Documentation, including this document

etc

Configuration files including template branding specializations

lib

Main perl module library folder

script

Main applications and startup files

.circleci

circleCI definitions

dbicdh

Database schema startup and migration files

container

Container definitions

profiles

Apparmor profiles

systemd

systemd service definitions

templates

HTML templates delivered by web UI

tools

Development tools

188

Chapter 67. Development setup
For developing openQA and os-autoinst itself it makes sense to checkout the Git repositories and
either execute existing tests or start the daemons manually.

67.1. Dependencies
Have a look at the packaged version (e.g. dist/rpm/openQA.spec within the root of the openQA
repository) for all required dependencies. For development build time dependencies need to be
installed as well. Recommended dependencies such as logrotate can be ignored. For openSUSE
there is also the openQA-devel meta-package which pulls all required dependencies for development.

You can find all required Perl modules in form of a cpanfile that enables you to install them with a
CPAN client. They are also defined in dist/rpm/openQA.spec.

67.2. Conducting tests
To execute all existing checks and tests simply call:

make test

for style checks, unit and integration tests.

To execute single tests call make with the selected tests in the TESTS variable specified as a white-
space separated list, for example:

make test TESTS=t/config.t

or

make test TESTS="t/foo.t t/bar.t"

To run only unit tests without other tests (perltidy or database tests):

make test-unit-and-integration TESTS=t/foo.t

Or use prove after pointing to a local test database in the environment variable TEST_PG. Also, If you
set a custom base directory, be sure to unset it when running tests. Example:

TEST_PG='DBI:Pg:dbname=openqa_test;host=/dev/shm/tpg' OPENQA_BASEDIR= LC_ALL=C.utf8
LANGUAGE= prove -v t/14-grutasks.t

In the case of wanting to tweak the tests as above, to speed up the test initialization, start

189

PostgreSQL using t/test_postgresql instead of using the system service. E.g.

t/test_postgresql

To check the coverage by individual test files easily call e.g.

make coverage TESTS=t/24-worker-engine.t

and take a look into the generated coverage HTML report in cover_db/coverage.html.

We use annotations in some places to mark "uncoverable" code such as this:

uncoverable subroutine

See the docs for details https://metacpan.org/pod/Devel::Cover

To run the tests with a different command than prove you can set the PROVE variable in the Makefile.
For example, in our CircleCI tests we use tools/prove_wrapper to run the tests. This wrapper is a
simple script that will run prove and fail the test if there is unhandled output. This is useful to avoid
having unhandled output in tests. To run the tests with tools/prove_wrapper you can do:

PROVE=tools/prove_wrapper make test TESTS=t/foo.t

There are some ways to save some time when executing local tests:

• One option is selecting individual tests to run as explained above

• Set the make variable KEEP_DB=1 to keep the test database process spawned for tests for faster re-
runs or run tests with prove manually after the test database has been created.

• Run tools/tidyall --git to tidy up modified code before committing in git

• Set the environment variable DIE_ON_FAIL=1 from Test::Most for faster aborts from failed tests.

For easier debugging of t/full-stack.t one can set the environment variable
OPENQA_FULLSTACK_TEMP_DIR to a clean directory (relative or absolute path) to be used for saving
temporary data from the test, for example the log files from individual test job runs within the full
stack test.

67.3. Customize base directory
It is possible to customize the openQA base directory (which is for instance used to store test
results) by setting the environment variable OPENQA_BASEDIR. The default value is /var/lib. For a
development setup, set OPENQA_BASEDIR to a directory the user you are going to start openQA with
has write access to. Additionally, take into account that the test results and assets can need a big
amount of disk space.

190

https://metacpan.org/pod/Devel::Cover

WARNING Be sure to clear that variable when running unit tests locally.

67.4. Customize configuration directory
When running openQA from a Git checkout it will find configuration files from that checkout under
etc/openqa and not use any system provided config files under e.g. /etc/openqa.

It can be necessary during development to change the configuration. For example you have to edit
etc/openqa/database.ini to use another database. It can also be useful to set the authentication
method to Fake and increase the log level etc/openqa/openqa.ini.

To avoid these changes getting in your Git workflow, copy them to a new directory and set the
environment variable OPENQA_CONFIG:

cp -ar etc/openqa etc/mine
export OPENQA_CONFIG=$PWD/etc/mine

NOTE
OPENQA_CONFIG needs to point to the directory containing openqa.ini, database.ini,
client.conf and workers.ini (and not a specific file).

67.5. Setting up the PostgreSQL database
Setting up a PostgreSQL database for openQA takes the following steps:

1. Install PostgreSQL - under openSUSE the following package are required: postgresql-server
postgresql-init

2. Start the server: systemctl start postgresql

3. The next two steps need to be done as the user postgres: sudo su - postgres

4. Create user: createuser your_username where your_username must be the same as the UNIX user
you start your local openQA instance with. For a development instance that is normally your
regular user.

5. Create database: createdb -O your_username openqa-local where openqa-local is the name you
want to use for the database

6. Configure openQA to use PostgreSQL as described in the section Database of the installation
guide. User name and password are not required. Of course you need to change the
database.ini file under your custom config directory (as you have probably done that in the
previous section).

7. openQA will default-initialize the new database on the next startup.

The script openqa-setup-db can be used to conduct step 4 and 5. You must still specify the user and
database name and run it as user postgres:

sudo sudo -u postgres openqa-setup-db your_username openqa-local`

191

NOTE
To remove the database again, you can use e.g. dropdb openqa-local as your regular
user.

67.5.1. Importing production data

Assuming you have already followed steps 1. to 4. above:

1. Create a separate database: createdb -O your_username openqa-o3 where openqa-o3+ is the name
you want to use for the database

2. The next steps must be run as the user you start your local openQA instance with, i.e. the
your_username user.

3. Import dump: pg_restore -c -d openqa-o3 path/to/dump Note that errors of the form ERROR: role
"geekotest" does not exist are due to the users in the production setup and can safely be
ignored. Everything will be owned by your_username.

4. Configure openQA to use that database as in step 7. above.

67.6. Manual daemon setup
This section should give you a general idea how to start daemons manually for development after
you setup a PostgreSQL database as mentioned in the previous section.

You have to install/update web-related dependencies first using npm install. To start the webserver
for development, use scripts/openqa daemon. The other daemons (mentioned in the architecture
diagram) are started in the same way, e.g. script/openqa-scheduler daemon.

You can also have a look at the systemd unit files. Although it likely makes not much sense to use
them directly you can have a look at them to see how the different daemons are started. They are
found in the systemd directory of the openQA repository. You can substitute /usr/share/openqa/ with
the path of your openQA Git checkout.

Of course you can ignore the user specified in these unit files and instead start everything as your
regular user as mentioned above. However, you need to ensure that your user has the permission
to the "openQA base directory". That is not the case by default so it makes sense to customize it.

You do not need to setup an additional web server because the daemons already provide one. The
port under which a service is available is logged on startup (the main web UI port is 9625 by
default). Local workers need to be configured to connect to the main web UI port (add HOST =
http://localhost:9526+ to `workers.ini).

Note that you can also start services using a temporary database using the unit test database setup
and data directory:

t/test_postgresql
TEST_PG='DBI:Pg:dbname=openqa_test;host=/dev/shm/tpg' OPENQA_DATABASE=test
OPENQA_BASEDIR=t/data script/openqa daemon

192

images/architecture.svg
images/architecture.svg
http://localhost:9526+

This creates an empty temporary database and starts the web application using that specific
database (ignoring the configuration from database.ini). Be aware that this may cause unwanted
changes in the t/data directory.

Also find more details in Run tests without Container.

67.6.1. Further tips

• It is also useful to start openQA with morbo which allows applying changes without restarting
the server: morbo -m development -w assets -w lib -w templates -l http://localhost:9526
script/openqa daemon

• In case you have problems with broken rendering of the web page it can help to delete the asset
cache and let the webserver regenerate it on first startup. For this delete the subdirectories
.sass-cache/, assets/cache/ and assets/assetpack.db. Make sure to look for error messages on
startup of the webserver and to force the refresh of the web page in your browser.

• If you get errors like "ERROR: Failed to build gem native extension." make sure you have all
listed dependencies including the "sass" application installed.

• For a concrete example some developers use under openSUSE Tumbleweed have a look at the
openQA-helper repository.

193

http://localhost:9526
https://github.com/Martchus/openQA-helper

Chapter 68. Handling of dependencies

68.1. Javascript and CSS
Install third-party JavaScript and CSS files via their corresponding npm packages and add the paths
of those files to assets/assetpack.def.

If a dependency is not available on npm you may consider adding those files under assets/3rdparty.
Additionally, add the license(s) for the newly added third-party code to the root directory of the
repository. Do not duplicate common/existing licenses; extend the Files:-section at the beginning of
those files instead.

68.2. Perl and other packages
In openQA, there is a dependencies.yaml file including a list of dependencies, separated in groups.
For example the openQA client does not need all modules required to run openQA. Edit this file to
add or change a dependency and run make update-deps. This will generate the cpanfile and
dist/rpm/openQA.spec files.

The same applies to os-autoinst where make update-deps will generate the cpanfile, os-
autoinst.spec and container/os-autoinst_dev/Dockerfile.

If changing any package dependencies make sure packages and updated packages are available in
openSUSE Factory and whatever current Leap version is in development. New package
dependencies can be submitted. Before merging the according change into the main openQA repo
the dependency should be published as part of openSUSE Tumbleweed.

68.3. Remarks regarding CI
• The CI of os-autoinst and openQA uses the container made using
container/devel:openQA:ci/base/Dockerfile and further dependencies listed in tools/ci/ci-
packages.txt (see CircleCI documentation).

• There is an additional check running using OBS to check builds of packages against openSUSE
Tumbleweed and openSUSE Leap.

194

Chapter 69. Managing the database
During the development process there are cases in which the database schema needs to be
changed. there are some steps that have to be followed so that new database instances and
upgrades include those changes.

69.1. When is it required to update the database
schema?
After modifying files in lib/OpenQA/Schema/Result. However, not all changes require to update the
schema. Adding just another method or altering/adding functions like has_many doesn’t require an
update. However, adding new columns, modifying or removing existing ones requires to follow the
steps mentioned above. In doubt, just follow the instructions below. If an empty migration has been
emitted (SQL file produced in step 3. does not contain any statements) you can just drop the
migration again.

69.2. How to update the database schema
1. First, you need to increase the database version number in the $VERSION variable in the

lib/OpenQA/Schema.pm file. Note that it is recommended to notify the other developers before
doing so, to synchronize in case there are more developers wanting to increase the version
number at the same time.

2. Then you need to generate the deployment files for new installations, this is done by running
./script/initdb --prepare_init.

3. Afterwards you need to generate the deployment files for existing installations, this is done by
running ./script/upgradedb --prepare_upgrade. After doing so, the directories
dbicdh/$ENGINE/deploy/<new version> and dbicdh/$ENGINE/upgrade/<prev version>-<new version>
for PostgreSQL should have been created with some SQL files inside containing the statements
to initialize the schema and to upgrade from one version to the next in the corresponding
database engine.

4. Custom migration scripts to upgrade from previous versions can be added under
dbicdh/_common/upgrade. Create a <prev_version>-<new_version> directory and put some files
there with DBIx commands for the migration. For examples just have a look at the migrations
which are already there. The custom migration scripts are executed in addition to the
automatically generated ones. If the name of the custom migration script comes before 001-
auto.sql in alphabetical order it will be executed before the automatically created migration
script. That is most of the times not desired.

The above steps are only for preparing the required SQL statements for the migration.

The migration itself (which alters your database!) is done automatically the first time the web UI is
(re)started. So be sure to backup your database before restarting to be able to downgrade again if
something goes wrong or you just need to continue working on another branch. To do so, the
following command can be used to create a copy:

195

createdb -O ownername -T originaldb newdb

To initialize or update the database manually before restarting the web UI you can run either
./script/initdb --init_database or ./script/upgradedb --upgrade_database.

Migrations that affect possibly big tables should be tested against a local import of a production
database to see how much time they need. Checkout the Importing production data section for
details.

A migration can cause the analyser to regress so it produces worse query plans leading to impaired
performance. Checkout the Working on database-related performance problems section for how to
tackle this problem.

69.3. How to add fixtures to the database
Note: This section is not about the fixtures for the testsuite. Those are located under t/fixtures.

Note: This section might not be relevant anymore. At least there are currently none of the
mentioned directories with files containing SQL statements present.

Fixtures (initial data stored in tables at installation time) are stored in files into the
dbicdh/_common/deploy/_any/<version> and dbicdh/_common/upgrade/<prev_version>-<next_version>
directories.

You can create as many files as you want in each directory. These files contain SQL statements that
will be executed when initializing or upgrading a database. Note that those files (and directories)
have to be created manually.

Executed SQL statements can be traced by setting the DBIC_TRACE environment variable.

export DBIC_TRACE=1

196

Chapter 70. Adding new authentication
module
openQA comes with two authentication modules providing authentication methods: OpenID and
Fake (see User authentication).

All authentication modules reside in lib/OpenQA/Auth directory. During openQA start, the
[auth]/method section of the web UI configuration is read and according to its value (or default
OpenID) openQA tries to require OpenQA::WebAPI::Auth::$method. If successful, the module for the
given method is imported or openQA ends with error.

Each authentication module is expected to export auth_login and auth_logout functions. In case of
request-response mechanism (as in OpenID), auth_response is imported on demand.

Currently there is no login page because all implemented methods use either 3rd party page or
none.

Authentication module is expected to return HASH:

%res = (
 # error = 1 signals auth error
 error => 0|1
 # where to redirect the user
 redirect => ''
);

Authentication module is expected to create or update user entry in openQA database after user
validation. See included modules for inspiration.

197

Chapter 71. Running tests of openQA itself
Beside simply running the testsuite, it is also possible to use containers. Using containers, tests are
executed in the same environment as on CircleCI. This allows to reproduce issues specific to that
environment.

71.1. Run tests without container
Be sure to install all required dependencies. The package openQA-devel will provide them.

If the package is not available the dependencies can also be found in the file dist/rpm/openQA.spec
in the openQA repository. In this case also the package perl-Selenium-Remote-Driver is required to
run UI tests. You also need to install chromedriver and either chrome or chromium for the UI tests.

To execute the testsuite use make test. This will also initialize a temporary PostgreSQL database
used for testing. To do this step manually run t/test_postgresql to initialize a temporary
PostgreSQL database. It is also possible to run a particular test, for example prove t/api/01-
workers.t. When using prove directly, make sure an English locale is set (e.g. export LC_ALL=C.utf8
LANGUAGE= before initializing the database and running prove).

To keep the test database running after executing tests with the Makefile, add KEEP_DB=1 to the make
arguments. To access the test database, use psql --host=/dev/shm/tpg openqa_test.

To watch the execution of the UI tests, set the environment variable NOT_HEADLESS.

71.2. Run tests within a container
The container used in this section of the documentation is not identical with the container used
within the CI. To run tests within the CI environment locally, checkout the CircleCI documentation
below.

To run tests in a container please be sure that a container runtime environment, for example
podman, is installed. To launch the test suite first it is required to pull the container image:

podman pull registry.opensuse.org/devel/openqa/containers/opensuse/openqa_devel:latest

This container image is provided by the OBS repository https://build.opensuse.org/package/show/
devel:openQA/openQA-devel-container and based on the Dockerfile within the container/devel sub
directory of the openQA repository.

Run tests by spawning a container manually, e.g.:

podman run --rm -v OPENQA_LOCAL_CODE:/opt/openqa -e VAR1=1 -e VAR2=1
openqa_devel:latest make run-tests-within-container

Replace OPENQA_LOCAL_CODE with the location where you have the openQA code.

198

https://build.opensuse.org/package/show/devel:openQA/openQA-devel-container
https://build.opensuse.org/package/show/devel:openQA/openQA-devel-container

NOTE

run-tests-within-container runs with CONTAINER_TEST enabled by default. It is
used to run scripts which are not meant to run inside openqa_devel and the image
itself does not contain any container engine. Consider disabling it to run any tests in
a container.

The command line to run tests manually reveals that the Makefile target run-tests-within-
container is used to run the tests inside the container. It does some preparations to be able to run
the full stack test within a container and considers a few environment variables defining our test
matrix:

CHECKSTYLE=1

FULLSTACK=0 UITESTS=0

FULLSTACK=0 UITESTS=1

FULLSTACK=1

HEAVY=1

GH_PUBLISH=true

So by replacing VAR1 and VAR2 with those values one can trigger the different tests of the matrix.

Of course it is also possible to run (specific) tests directly via prove instead of using the Makefile
targets.

71.2.1. Tips

Running UI tests in non-headless mode is also possible, eg.:

xhost +local:root
podman run --rm -ti --name openqa-testsuite -v /tmp/.X11-unix:/tmp/.X11-unix:rw -e
DISPLAY="$DISPLAY" -e NOT_HEADLESS=1 openqa_devel:latest prove -v t/ui/14-dashboard.t
xhost -local:root

It is also possible to use a custom os-autoinst checkout using the following arguments:

podman run … -e CUSTOM_OS_AUTOINST=1 -v /path/to/your/os-autoinst:/opt/os-autoinst
make run-tests-within-container

By default, configure and make are still executed (so a clean checkout is expected). If your checkout
is already prepared to use, set CUSTOM_OS_AUTOINST_SKIP_BUILD to prevent this. Be aware that the
build produced outside of the container might not work inside the container if both environments
provide different, incompatible library versions (eg. OpenCV).

In general, if starting the tests via a container seems to hang, it is a good idea to inspect the process
tree to see which command is currently executed.

199

71.3. Logging behavior
Logs are redirected to a logfile when running tests within the CI. The output can therefore not be
asserted using Test::Output. This can be worked around by temporarily assigning a different
Mojo::Log object to the application. To test locally under the same condition set the environment
variable OPENQA_LOGFILE.

Note that redirecting the logs to a logfile only works for tests which run OpenQA::Log::setup_log. In
other tests the log is just printed to the standard output. This makes use of Test::Output simple but
it should be taken care that the test output is not cluttered by log messages which can be quite
irritating.

71.4. Test runtime limits
The test modules use OpenQA::Test::TimeLimit to introduce a test module specific timeout. The
timeout is automatically scaled up based on environment variables, e.g. CI for continuous
integration environments, as well as when executing while test coverage data is collected as longer
runtimes should be expected in these cases. Consider lowering the timeout value based on usual
local execution times whenever a test module is optimized in runtime. If the timeout is hit the test
module normally aborts with a corresponding message.

To disable the timeout globably set the environment variable OPENQA_TEST_TIMEOUT_DISABLE=1.

Please be aware of the exception when the timeout triggers after the actual test part of a test
module has finished but not all involved processes have finished or END blocks are processed. In
this case the output can look like

t/my_test.t .. All 1 subtests passed

Test Summary Report

t/my_test.t (Wstat: 14 Tests: 1 Failed: 0)
 Non-zero wait status: 14
Files=1, Tests=1, 2 wallclock secs (0.03 usr 0.00 sys + 0.09 cusr 0.00 csys =
0.12 CPU)
Result: FAIL

where "Wstat: 14" and "Non-zero wait status: 14" mean that the test process received the "ALRM"
signal (signal number 14).

In case of problems with timeouts look into OpenQA::Test::TimeLimit to find environment variables
that can tweaked to disable or change timeout values or timeout scale factors. If you want to disable
the timeout for indefinite manual debugging, set the environment variable
OPENQA_TEST_TIMEOUT_DISABLE=1. The option OPENQA_TEST_TIMEOUT_SCALE_CI is only effective if the
environment variable CI is set, which e.g. it is in circleCI and OBS but not in local development
environments. When running with coverage analysis enabled the scaling factor of
OPENQA_TEST_TIMEOUT_SCALE_COVER is applied to account for the runtime overhead.

200

In case of Selenium based UI tests timing out trying to find a local chromedriver instance the
variable OPENQA_SELENIUM_TEST_STARTUP_TIMEOUT can be set to a higher value. See
https://metacpan.org/pod/Selenium::Chrome#startup_timeout for details.

201

https://metacpan.org/pod/Selenium::Chrome#startup_timeout

Chapter 72. CircleCI workflow
The goal of the following workflow is to provide a way to run tests with a pre-approved list of
dependencies both in the CI and locally.

72.1. Dependency artefacts
• ci-packages.txt lists dependencies to test against.

• autoinst.sha contains sha of os-autoinst commit for integration testing. The testing will run
against the latest master if empty.

72.2. Managing and troubleshooting dependencies
ci-packages.txt and autoinst.sha are aimed to represent those dependencies which change often.
In normal workflow these files are generated automatically by dedicated Bot, then go in PR through
CI, then reviewed and accepted by human. So, in normal workflow it is guaranteed that everyone
always works on list of correct and approved dependencies (unless they explicitly tell CI to use
custom dependencies).

The Bot tracks dependencies only in master branch by default, but this may be extended in circleci
config file. The Bot uses tools/ci/build_dependencies.sh script to detect any changes. This script can
be used manually as well. Alternatively just add newly introduced dependencies into ci-
packages.txt, so CI will run tests with them.

Occasionally it may be a challenge to work with ci-packages.txt (e.g. package version is not
available anymore). In such case you can either try to rebuild ci-packages.txt using
tools/ci/build_dependencies.sh or just remove all entries and put only openQA-devel into it Script
tools/ci/build_dependencies.sh can be also modified when major changes are performed, e.g.
different OS version or packages from forked OBS project, etc.

72.3. Run tests locally using a container
One way is to build an image using the build_local_container.sh script, start a container and then
use the same commands one would use to test locally.

Pull the latest base image (otherwise it may be outdated):

podman pull registry.opensuse.org/devel/openqa/ci/containers/base:latest

Create an image called localtest based on the contents of ci-packages.txt and autoinst:

tools/ci/build_local_container.sh

Mount the openQA checkout under /opt/testing_area within the container and run tests as usual,
e.g.:

202

podman run -it --rm -v $PWD:/opt/testing_area localtest bash -c 'make test
TESTS=t/ui/25*'

Alternatively, start the container and execute commands via podman exec, e.g.:

podman run --rm --name t1 -v $PWD:/opt/testing_area localtest tail -f /dev/null &
sleep 1
podman exec -it t1 bash -c 'make test TESTS=t/ui/25-developer_mode.t'
podman stop -t 0 t1

72.4. Run tests using the circleci tool
After installing the circleci tool the following commands will be available. They will build the
container and use committed changes from current local branch.

circleci local execute --job test1
circleci local execute --job testui
circleci local execute --job testfullstack
circleci local execute --job testdeveloperfullstack

72.5. Changing config.cnf
Command to verify the YAML with the circleci tool:

circleci config process .circleci/config.yml

203

Chapter 73. Building plugins
Not all code needs to be included in openQA itself. openQA also supports the use of 3rd party
plugins that follow the standards for plugins used by the Mojolicious web framework. These can be
distributed as normal CPAN modules and installed as such alongside openQA.

Plugins are a good choice especially for extensions to the UI and HTTP API, but also for notification
systems listening to various events inside the web server.

If your plugin was named OpenQA::WebAPI::Plugin::Hello, you would install it in one of the include
directories of the Perl used to run openQA, and then configure it in openqa.ini. The plugins setting
in the global section will tell openQA what plugins to load.

Tell openQA to load the plugin
[global]
plugins = Hello

Plugin specific configuration (optional)
[hello_plugin]
some = value

The plugin specific configuration is optional, but if defined would be available in
$app→config→{hello_plugin}.

To extend the UI or HTTP API there are various named routes already defined that will take care of
authentication for your plugin. You just attach the plugin routes to them and only authenticated
requests will get through.

204

https://mojolicious.org

package OpenQA::WebAPI::Plugin::Hello;
use Mojo::Base 'Mojolicious::Plugin';

sub register {
 my ($self, $app, $config) = @_;

 # Only operators may use our plugin
 my $ensure_operator = $app->routes->find('ensure_operator');
 my $plugin_prefix = $ensure_operator->any('/hello_plugin');

 # Plain text response (under "/admin/hello_plugin/")
 $plugin_prefix->get('/' => sub {
 my $c = shift;
 $c->render(text => 'Hello openQA!');
 })->name('hello_plugin_index');

 # Add a link to the UI menu
 $app->config->{plugin_links}{operator}{'Hello'} = 'hello_plugin_index';
}

1;

The plugin_links configuration setting can be modified by plugins to add links to the operator and
admin sections of the openQA UI menu. Route names or fully qualified URLs can be used as link
targets. If your plugin uses templates, you should reuse the bootstrap layout provided by openQA.
This will ensure a consistent look, and make the UI menu available everywhere.

% layout 'bootstrap';
% title 'Hello openQA!';
<div>
 <h2>Hello openQA!</h2>
</div>

For UI plugins there are two named authentication routes defined:

1. ensure_operator: under /admin/, only allows logged in users with operator privileges

2. ensure_admin: under /admin/, only allows logged in users with admin privileges

And for HTTP API plugins there are four named authentication routes defined:

1. api_public: under /api/v1/, allows access to everyone

2. api_ensure_user: under /api/v1/, only allows authenticated users

3. api_ensure_operator: under /api/v1/, only allows authenticated users with operator privileges

4. api_ensure_admin: under /api/v1/, only allows authenticated nusers with admin privileges

To generate a minimal installable plugin with a CPAN distribution directory structure you can use
the Mojolicious tools. It can be packaged just like any other Perl module from CPAN.

205

$ mojo generate plugin -f OpenQA::WebAPI::Plugin::Hello
...
$ cd OpenQA-WebAPI-Plugin-Hello/
$ perl Makefile.PL
...
$ make test
...

And if you need code examples, there are some plugins included with openQA.

206

https://github.com/os-autoinst/openQA/tree/master/lib/OpenQA/WebAPI/Plugin

Chapter 74. Checking for JavaScript
problems
One can use the tool jshint to check for problems within JavaScript code. It can be installed easily
via npm.

npm install jshint
node_modules/jshint/bin/jshint path/to/javascript.js

207

Chapter 75. Profiling the web UI
1. Install NYTProf, under openSUSE Tumbleweed: zypper in perl-Devel-NYTProf perl-Mojolicious-

Plugin-NYTProf

2. Put profiling_enabled = 1+ in `openqa.ini.

3. Optionally import production data like described in the official contributors documentation.

4. Restart the web UI, browse some pages. Profiling is done in the background.

5. Access profiling data via /nytprof route.

75.1. Note
Profiling data is extensive. Remove it if you do not need it anymore and disable the
profiling_enabled configuration again if not needed anymore.

208

Chapter 76. Making documentation changes
After changing documentation, consider generating documentation locally to verify it is rendered
correctly using tools/generate-docs. It is possible to do that inside the provided development
container by invoking:

podman run --rm -v OPENQA_LOCAL_CODE:/opt/openqa
registry.opensuse.org/devel/openqa/containers/opensuse/openqa_devel:latest make
generate-docs

Replace OPENQA_LOCAL_CODE with the location where you have the openQA code. The documentation
will be built inside the container and put into docs/build/ subfolder.

You can also utilize the make serve-docs target which will additionally spawn a simple Python HTTP
server inside the target folder, so you can just point your browser to port 8000 to view the
documentation. That could be handy for example in situations where you do not have the
filesystem directly accessible (i.e. remote development). The magic line in this case would be:

podman run --rm -it -p 8000:8000 -v .:/opt/openqa openqa_devel:latest make serve-docs

209

openQA branding
You can alter the appearance of the openQA web UI to some extent through the "branding"
mechanism. The branding configuration setting in the global section of the web UI configuration
specifies the branding to use. It defaults to 'openSUSE', and openQA also includes the "plain"
branding, which is - as its name suggests - plain and generic.

To create your own branding for openQA, you can create a subdirectory of
/usr/share/openqa/templates/branding (or wherever openQA is installed). The subdirectory’s name
will be the name of your branding. You can copy the files from branding/openSUSE or branding/plain
to use as starting points, and adjust as necessary.

210

Chapter 77. Web UI template
openQA uses the Mojolicious framework’s templating system; the branding files are included into
the openQA templates at various points. To see where each branding file is actually included, you
can search through the files in the templates tree for the text include_branding. Anywhere that
helper is called, the branding file with the matching name is being included.

The branding files themselves are Mojolicious 'Embedded Perl' templates just like the main
template files. You can read the Mojolicious Documentation for help with the format.

211

https://mojolicious.org/
https://docs.mojolicious.org/Mojolicious/Guides/Rendering/

Containerized setup
The installation guide already contains simple one-liners for starting the web UI and workers in the
Container based setup section.

This chapter describes how to deploy the containers for the openQA web UI and the workers using
docker-compose or podman-compose.

There is also an approach using Fedora-based images mentioned but it is not supported by
upstream.

212

Chapter 78. Get container images
You can either build the images locally or use Fedora images from Docker Hub.

For the docker-compose setup it is required to build the images locally. However, it is done via
docker-compose and explained later so this section can be skipped.

78.1. Download Fedora-based images from the Docker
Hub

podman pull fedoraqa/openqa_data
podman pull fedoraqa/openqa_webui
podman pull fedoraqa/openqa_worker

78.2. Build openSUSE-based images locally

podman build -t openqa_data ./openqa_data
podman build -t openqa_webui ./webui
podman build -t openqa_worker ./worker

213

Chapter 79. Setup with Fedora-based images

79.1. Data storage and directory structure
Our intent was to create universal webui and worker containers and move all data storage and
configurations to a third container, called openqa_data. openqa_data is a so called Data Volume
Container and is used for the database and to store results and configuration. During development
and in production, you could update webui and worker images but as long as openqa_data is intact,
you do not lose any data.

To make development easier and to reduce the final size of the openqa_data container, this guide
describes how to override tests and factory directories with directories from your host system.
This is not necessary but recommended. This guide is written with this setup in mind.

It is also possible to use tests and factory from within the openqa_data container (so you do not
have any dependency on your host system) or to leave out the openqa_data container altogether (so
you have only webui and worker containers and data is loaded and saved completely into your host
system). If this is what you prefer, checkout the sections Keeping all data in the Data Volume
Container and Keeping all data on the host system respectively.

Otherwise, when you want to have the big files (isos and disk images, tests and needles) outside of
the Volume container, you should create this file structure from within the directory you are going
to execute the container:

mkdir -p data/factory/{iso,hdd} data/tests

It could be necessary to either run all containers in privileged mode or to setup SELinux properly. If
you are having problems with it, run this command:

chcon -Rt svirt_sandbox_file_t data

79.2. Update firewall rules
There is a bug in Fedora with docker-1.7.0-6 package that prevents containers to communicate
with each other. This bug prevents workers to connect to the web UI. If you use docker, as a
workaround, run:

sudo iptables -A DOCKER --source 0.0.0.0/0 --destination 172.17.0.0/16 -m conntrack
--ctstate RELATED,ESTABLISHED -j ACCEPT
sudo iptables -A DOCKER --destination 0.0.0.0/0 --source 172.17.0.0/16 -j ACCEPT

on the host machine.

214

https://docs.docker.com/storage/volumes#creating-and-mounting-a-data-volume-container
https://docs.docker.com/storage/volumes#creating-and-mounting-a-data-volume-container
https://bugzilla.redhat.com/show_bug.cgi?id=1244124

79.3. Run the data and web UI containers

podman run -d -h openqa_data --name openqa_data -v "$PWD"/data/factory:/data/factory
-v "$PWD"/data/tests:/data/tests fedoraqa/openqa_data
podman run -d -h openqa_webui --name openqa_webui --volumes-from openqa_data -p 80:80
-p 443:443 fedoraqa/openqa_webui

You can change the -p parameters if you do not want the openQA instance to occupy ports 80 and
443, e.g. -p 8080:80 -p 8043:443, but this will cause problems if you wish to set up workers on other
hosts (see below). You do need root privileges to bind ports 80 and 443 in this way.

It is now necessary to create and store the client keys for openQA. In the next two steps, you will set
an OpenID provider (if necessary), create the API keys in the openQA’s web interface, and store the
configuration in the Data Container.

79.3.1. Generate and configure API credentials

Go to https://localhost/api_keys, generate key and secret. Then run the following command
substituting KEY and SECRET with the generated values:

exec -it openqa_data /scripts/client-conf set -l KEY SECRET

79.4. Run the worker container

podman run -d -h openqa_worker_1 --name openqa_worker_1 --link
openqa_webui:openqa_webui --volumes-from openqa_data --privileged
fedoraqa/openqa_worker

Check whether the worker connected in the web UI’s administration interface.

To add more workers, increase the number that is used in hostname and container name, so to add
worker 2 use:

podman run -d -h openqa_worker_2 --name openqa_worker_2 --link
openqa_webui:openqa_webui --volumes-from openqa_data --privileged
fedoraqa/openqa_worker

79.5. Enable services
Some systemd services are provided to start up the containers, so you do not have to keep doing it
manually. To install and enable them:

215

https://localhost/api_keys

sudo cp systemd/*.service /etc/systemd/system
sudo systemctl daemon-reload
sudo systemctl enable openqa-data.service
sudo systemctl enable openqa-webui.service
sudo systemctl enable openqa-worker@1.service

Of course, if you set up two workers, also do sudo systemctl enable openqa-worker@2.service, and so
on.

79.6. Get tests, ISOs and create disks
You have to put your tests under data/tests directory and ISOs under data/factory/iso directory.
For testing Fedora, run:

git clone https://bitbucket.org/rajcze/openqa_fedora data/tests/fedora
wget https://dl.fedoraproject.org/pub/alt/stage/22_Beta_RC3/Server/x86_64/iso/Fedora-
Server-netinst-x86_64-22_Beta.iso -O data/factory/iso/Fedora-Server-netinst-x86_64-
22_Beta_RC3.iso

And set permissions, so any user can read/write the data:

chmod -R 777 data

This step is unfortunately necessary with Docker because Docker can not mount a volume with
specific user ownership in container, so ownership of mounted folders (uid and gid) is the same as
on your host system (presumably 1000:1000 which maps into nonexistent user in all of the
containers).

If you wish to keep the tests (for example) separate from the shared directory, for any reason (we
do, in our development scenario) refer to the [Developing tests with Container setup] section at the
end of this document.

Populate the openQA database:

podman exec openqa_webui /var/lib/openqa/tests/fedora/templates

Create all necessary disk images:

cd data/factory/hdd && createhdds.sh VERSION

where VERSION is the current stable Fedora version (its images will be created for upgrade tests) and
createhdds.sh is in openqa_fedora_tools repository in /tools directory. Note that you have to have
libguestfs-tools and libguestfs-xfs installed.

216

https://github.com/docker/docker/issues/7198
https://github.com/docker/docker/issues/7198

Chapter 80. Setup openQA with openSUSE-
based images and docker-compose
All relative paths in this section are relative to a checkout of openQA’s Git repository.

80.1. Configuration
The web UI will be available under http://localhost and https://localhost. So it is using default
HTTP(S) ports. Make sure those ports are not used by another service yet or change ports in the
nginx section of container/webui/docker-compose.yaml.

If TLS is required, edit the certificates mentioned in the nginx section of container/webui/docker-
compose.yaml to point it to your certificate. By default, a self-signed test certificate is used.

Edit container/webui/conf/openqa.ini to configure the web UI as needed, e.g. change [auth] method
= Fake or [logging] level = debug. If the web UI will be exposed/accessed via a certain domain, set
base_url in the [global] section accordingly so redirections for authentication work.

Edit container/worker/conf/workers.ini to configure the workers as needed.

Edit container/webui/nginx.conf to customize the NGINX configuration.

To set the number of web UI replicas set the environment variable OPENQA_WEBUI_REPLICAS to the
desired number. If this is not set, then the default value is 2. Additionally, you can edit
container/webui/.env to set the default value for this variable. This does not affect the websocket
server, livehandler and gru.

All the data which normally ends up under /var/lib/openqa in the default setup will be stored
under container/webui/workdir/data. The database will be stored under container/webui/workdir/db.

80.2. Build images
docker-compose will build images automatically. However, it is also possible to build images
explicitly:

cd container/webui
docker-compose build # build web UI images
docker-compose build nginx # build a specific web UI image
cd container/worker
docker-compose build # build worker images

80.3. Run the web UI containers in HA mode
To start the containers, just run:

217

http://localhost
https://localhost

cd container/webui
docker-compose up

To rebuild the images, add --build.

It is also possible to run it in the background by adding -d. To stop it again, run:

docker-compose down

Further useful commands:

docker-compose top # show spawned containers and their status
docker-compose logs # access logs
docker-compose exec db psql openqa openqa # open psql shell

80.4. Generate and configure API credentials
Go to https://localhost/api_keys and generate a key/secret and configure it in
container/webui/conf/client.conf and container/worker/conf/client.conf in all sections.

The web UI services need the credentials as well for internal API requests. So it is required to
restart the web UI containers to apply the changes:

cd container/webui
docker-compose restart

80.5. Run the worker container
Configure the number of workers to start via the environment variable OPENQA_WORKER_REPLICAS. By
default, one worker is started.

To start a worker, just run:

cd container/worker
docker-compose up

The same docker-compose commands as shown for the web UI can be used for further actions. The
worker should also show up in the web UI’s workers table.

It is also possible to use a container runtime environment directly as shown by the script
container/worker/launch_workers_pool.sh which allows spawning a bunch of workers with
consecutive numbers for the --instance parameter:

It will launch the desired number of workers in individual containers using consecutive numbers

218

https://localhost/api_keys

for the --instance parameter:

cd container/worker
./launch_workers_pool.sh --size=<number-of-workers>

80.6. Get tests, ISOs and create disks
You have to put your tests under data/tests directory and ISOs under data/factory/iso directory.
For testing openSUSE, follow this guide.

The test distribution might have additional dependencies which need to be installed into the
worker container before tests can run. To install those dependencies automatically on the container
startup one can add a script called install_deps.sh in the root of the test distribution which would
install the dependencies, e.g. via a zypper call.

219

https://github.com/os-autoinst/openQA/blob/master/docs/GettingStarted.asciidoc#testing-opensuse-or-fedora

Chapter 81. Running jobs
After performing the "setup" tasks above - do not forget about tests and ISOs.

Then you can use openqa-cli as usual with the containerized web UI. It is also possible to use
openqa-clone-job, e.g.:

cd container/webui
docker-compose exec webui openqa-clone-job \
 --host http://localhost:9526 \
 https://openqa.opensuse.org/tests/1896520

220

Chapter 82. Further configuration options
Most of these options do not apply to the docker-compose setup.

82.1. Change the OpenID provider
https://www.opensuse.org/openid/user/ is set as a default OpenID provider. To change it, run:

podman exec -it openqa_data /scripts/set_openid

and enter the provider’s URL.

82.2. Adding workers on other hosts
You may want to add workers on other hosts, so you do not need one powerful host to run the UI
and all the workers.

Let’s assume you are setting up a new 'worker host' and it can see the web UI host system with the
hostname openqa_webui.

You must somehow share the data directory from the web UI host to each host on which you want
to run workers. For instance, to use sshfs on the new worker host, run:

sshfs -o context=unconfined_u:object_r:svirt_sandbox_file_t:s0
openqa_webui:/path/to/data /path/to/data

Of course, the worker host must have an ssh key the web UI host will accept. You can add this
mount to /etc/fstab to make it permanent.

Then check openqa_fedora_tools out on the worker host and run the data container, as described
above:

podman run -d -h openqa_data --name openqa_data -v /path/to/data/factory:/data/factory
-v /path/to/data/tests:/data/tests fedoraqa/openqa_data

and set up the API key with podman exec -ti openqa_data /scripts/set_keys.

Finally create a worker container, but omit the use of --link. Ensure you use a hostname which is
different from all other worker instances on all other hosts. The container name only has to be
unique on this host, but it probably makes sense to always match the hostname to the container
name:

podman run -h openqa_worker_3 --name openqa_worker_3 -d --volumes-from openqa_data
--privileged fedoraqa/openqa_worker

221

https://www.opensuse.org/openid/user/

If the container will not be able to resolve the openqa_webui hostname (this depends on your
network setup) you can use --add-host to add a line to /etc/hosts when running the container:

podman run -h openqa_worker_3 --name openqa_worker_3 -d --add
-host="openqa_webui:10.0.0.1" --volumes-from openqa_data --privileged
fedoraqa/openqa_worker

Worker instances always expect to find the server as openqa_webui; if this will not work you must
adjust the /data/conf/client.conf and /data/conf/workers.ini files in the data container. You will
also need to adjust these files if you use non-standard ports (see above).

82.3. Keeping all data in the Data Volume container
If you decided to keep all the data in the Volume container (openqa_data), run the following
commands:

podman exec openqa_data mkdir -p data/factory/{iso,hdd} data/tests
podman exec openqa_data chmod -R 777 data/factory/{iso,hdd} data/tests

In the section about running the web UI and data container, use the openqa_data container like this
instead:

podman run -d -h openqa_data --name openqa_data fedoraqa/openqa_data

And finally, download the tests and ISOs directly into the container:

podman exec openqa_data git clone https://bitbucket.org/rajcze/openqa_fedora
/data/tests/fedora
podman exec openqa_data wget
https://dl.fedoraproject.org/pub/alt/stage/22_Beta_RC3/Server/x86_64/iso/Fedora-
Server-netinst-x86_64-22_Beta.iso -O /data/factory/iso/Fedora-Server-netinst-x86_64-
22_Beta_RC3

The rest of the steps should be the same.

82.4. Keeping all data on the host system
If you want to keep all the data in the host system and you prefer not to use a Volume Container,
run the following commands:

cp -a openqa_data/data.template data
chcon -Rt svirt_sandbox_file_t data

222

In the section about running the web UI and data container, do not run the openqa_data container
and run the webui container like this instead:

podman run -d -h openqa_webui -v `pwd`/data:/data --name openqa_webui -p 443:443 -p
80:80 fedoraqa/openqa_webui:4.1-3.12

Change OpenID provider in data/conf/openqa.ini under provider in [openid] section and then put
Key and Secret under both sections in data/conf/client.conf.

In the run worker container section, run the worker as:

podman run -h openqa_worker_1 --name openqa_worker_1 -d --link
openqa_webui:openqa_webui -v `pwd`/data:/data --volumes-from openqa_webui --privileged
fedoraqa/openqa_worker:4.1-3.12 1

Then continue with tests and ISOs downloading as before.

82.5. Developing tests with container setup
With this setup, the needles created from the web UI will almost certainly have a different owner
and group than your user account. As we have the tests in Git, we still want to retain the original
owner and permissions, even when we update/create needles from openQA. To accomplish this, we
can use BindFS. An example entry in /etc/fstab:

bindfs#/home/jskladan/src/openQA/openqa_fedora
/home/jskladan/src/openQA/openqa_fedora_tools/docker/data/tests/fedora fuse
create-for-user=jskladan,create-for-group=jskladan,create-with-perms=664:a+X,perms=777
0 0

Mounts the openqa_fedora directory to the …/tests/fedora directory. All files in the tests/fedora
directory seem to have 777 permissions set, but new files are created (in the underlying
openqa_fedora directory) with jskladan:jskladan user and group, and 664:a+X permissions.

223

	openQA Documentation
	Table of Contents
	openQA starter guide
	Chapter 1. Introduction
	Chapter 2. Architecture
	Chapter 3. Basic concepts
	3.1. Glossary
	3.2. Jobs
	3.3. Needles
	3.3.1. Areas
	3.3.2. Click points

	3.4. Configuration
	3.4.1. Locations
	3.4.2. Drop-in configurations

	3.5. Access management
	3.6. Job groups
	3.7. Cleanup

	Chapter 4. Using the client script
	Chapter 5. Testing openSUSE or Fedora
	5.1. Getting tests
	5.2. Getting openQA configuration
	5.3. Adding a new ISO to test

	Chapter 6. Pitfalls

	openQA installation guide
	Chapter 7. Introduction
	Chapter 8. Container based setup
	8.1. Single-instance container
	8.1.1. How to run a test with single-instance container in 5 minutes
	8.1.2. Triggering and cloning existing jobs within single-instance container

	8.2. Separate web UI and worker containers
	8.3. Custom configuration for containers

	Chapter 9. Quick bootstrapping under openSUSE
	9.1. Directly on your machine
	9.2. openQA in a browser
	9.3. openQA in a container

	Chapter 10. Custom installation - repositories and procedure
	10.1. Official repositories
	10.2. Development version repository
	10.3. Installation
	10.3.1. Preparations on SLE
	10.3.2. Installing openQA
	10.3.3. Installation from sources

	Chapter 11. System requirements
	Chapter 12. Basic configuration
	12.1. Apache proxy
	12.2. NGINX proxy
	12.3. TLS/SSL
	12.4. Database
	12.4.1. Example for connecting to local PostgreSQL database
	12.4.2. Example for connecting to remote PostgreSQL database

	12.5. User authentication
	12.5.1. OpenID
	12.5.2. OAuth2
	12.5.3. Fake

	Chapter 13. Run the web UI
	13.1. Additional considerations for zero-downtime upgrades

	Chapter 14. Run openQA workers
	Chapter 15. Where to now?
	Chapter 16. Advanced configuration
	16.1. Cleanup
	16.2. Setting up git support
	16.2.1. Configuration of automatic needle commit feature

	16.3. Referer settings to auto-mark important jobs
	16.4. Worker settings
	16.5. Further systemd units for the worker
	16.5.1. Stopping/restarting workers without interrupting currently running jobs

	16.6. Configuring remote workers
	16.7. Configuring AMQP message emission
	16.8. Configuring worker to use more than one openQA server
	16.9. Asset and test/needle caching
	16.10. Alternative caching implementations
	16.11. Enable linking files referred by job settings
	16.12. Enable custom hook scripts on "job done" based on result
	16.13. Automatic cloning of incomplete jobs
	16.14. Enable automatic database backup

	Chapter 17. Auditing - tracking openQA changes
	17.1. List of events tracked by the auditing plugin

	Chapter 18. Automatic system upgrades and reboots of openQA hosts
	Chapter 19. Migrating from older databases
	Chapter 20. Migrating PostgreSQL database on openSUSE
	Chapter 21. Working on database-related performance problems
	21.1. Enable further statistics
	21.1.1. Make use of these statistics

	21.2. Further things to try
	21.3. Further resources

	Chapter 22. Filesystem layout
	22.1. Terms and variables for certain directories used by openQA and isotovideo
	22.1.1. Further notes

	Chapter 23. Automatic installation of the operating systems for openQA machines
	Chapter 24. Special network conditions
	24.1. WireGuard

	Chapter 25. Troubleshooting
	25.1. Tests fail quickly
	25.2. KVM does not work
	25.3. OpenID login times out
	25.4. Performance testing

	openQA users guide
	Chapter 26. Introduction
	Chapter 27. Using job templates to automate jobs creation
	27.1. The problem
	27.2. Machines
	27.3. Medium Types (products)
	27.4. Test Suites
	27.5. Job Groups
	27.6. Variable expansion
	27.7. Variable precedence

	Chapter 28. Use of the web interface
	28.1. Description of test suites
	28.2. /tests/overview - Customizable test overview page
	28.3. Review badges
	28.3.1. Meaning of the different colors

	28.4. Bug references, labels and flags
	28.4.1. Bug references
	28.4.2. Labels
	Overwrite result of job

	28.4.3. Flags
	flag:carryover

	28.5. Distinguish product and test issues bugref gh#708
	28.6. Build tagging
	28.6.1. Tag builds with special comments on group overview
	28.6.2. Keeping important builds

	28.7. Filtering test results and builds
	28.8. Highlighting job dependencies in 'All tests' table
	28.9. Show previous results in test results page gh#538
	28.10. Link to latest in scenario name gh#836
	28.11. Add `latest' query route gh#815
	28.12. Allow group overview query by result gh#531
	28.13. Add web UI controls to select more builds in group_overview gh#804
	28.14. More query parameters for configuring last builds gh#575
	28.15. Web UI controls to filter only tagged or all builds gh#807
	28.16. Test result badges gh#5022
	28.17. Carry over of bug references from previous jobs in same scenario
	28.18. Pinning comments as group description
	28.19. Dark mode
	28.20. Developer mode
	28.20.1. Workflow for creating or updating needles

	28.21. Job group editor gh#2111
	28.21.1. YAML job templates editor
	28.21.2. Deprecated: Table-based (pre-migration)

	Chapter 29. Configuring job groups via YAML documents
	29.1. Defaults
	29.2. YAML Aliases
	29.3. YAML Merge Keys
	29.4. General YAML documentation

	Chapter 30. Use of the REST API
	30.1. Finding tests
	30.1.1. Remarks

	30.2. Triggering tests
	30.2.1. Cloning existing jobs - openqa-clone-job
	30.2.2. Spawning single new jobs - jobs post
	Further examples for advanced dependency handling

	30.2.3. Spawning multiple jobs based on templates - isos post
	Statistical investigation
	Defining test scenarios in YAML

	30.2.4. Remarks

	30.3. Job template YAML

	Chapter 31. Asset handling
	31.1. Specifying assets required by a job
	31.2. Specifying assets created by a job
	31.2.1. Private assets

	Chapter 32. Cleanup of assets, results and other data
	32.1. Cleanup strategy for assets
	32.2. Configuring limit for assets within job groups
	32.3. Configuring limit for groupless assets
	32.4. Timers and triggers
	32.5. Disabling cleanup

	Chapter 33. CLI interface
	Chapter 34. Suggested workflow for test review
	Chapter 35. Where to now?

	openQA test developer guide
	Chapter 36. Introduction
	Chapter 37. Basic
	Chapter 38. Test API
	Chapter 39. How to write tests
	39.1. Test module interface
	39.1.1. run
	39.1.2. test_flags
	39.1.3. pre_run_hook
	39.1.4. post_fail_hook
	39.1.5. post_run_hook

	39.2. Notes on the Python API
	39.3. Example Perl test modules
	39.3.1. Boot to desktop
	39.3.2. Install software via zypper
	39.3.3. Sample X11 Test

	39.4. Example Python test modules
	39.4.1. openQA web UI sample test

	Chapter 40. Variables
	Chapter 41. Advanced test features
	41.1. Changing timeouts
	41.2. Capturing kernel exceptions and/or any other exceptions from the serial console
	41.3. Traceability and reproducibility of tests
	41.3.1. General remarks on tracing
	41.3.2. Logging package versions used for test
	41.3.3. General remarks on reproducibility

	41.4. Assigning jobs to workers
	41.5. Running a custom worker engine
	41.6. Automatic retries of jobs
	41.7. Job dependencies
	41.7.1. Declaring dependencies
	Chained dependencies
	Parallel dependencies
	Dependency pinning

	41.7.2. Inter-machine dependencies
	41.7.3. Handling of related jobs on failure / cancellation / restart
	Further notes

	41.7.4. Handling of dependencies when cloning jobs
	41.7.5. Examples
	Specify machine explicitly
	Implicitly inherit machines from parent
	Conflicting machines prevent inheritance from parent
	Implicitly creating a dependency on same machine

	41.7.6. Notes regarding directly chained dependencies
	41.7.7. Worker requirements
	Examples

	41.8. Writing multi-machine tests
	41.9. Test synchronization and locking API
	41.10. Support Server based tests
	41.10.1. Preparing the supportserver
	41.10.2. Using the supportserver

	41.11. Using text consoles and the serial terminal
	41.11.1. Using a serial terminal
	41.11.2. Sending new lines and continuation characters
	41.11.3. Sending signals - ctrl-c and ctrl-d
	41.11.4. The virtio serial terminal implementation

	Chapter 42. Test Development tricks
	42.1. Trigger new tests by modifying settings from existing test runs
	42.2. Backend variables for faster test execution
	42.3. Using snapshots to speed up development of tests
	42.3.1. Enable snapshots for each module
	42.3.2. Storing only the last successful snapshot

	42.4. Defining a custom test schedule or custom test modules
	42.4.1. EXCLUDE_MODULES
	42.4.2. INCLUDE_MODULES
	42.4.3. SCHEDULE
	42.4.4. SCHEDULE + ASSET_<NR>_URL

	42.5. Triggering tests based on an any remote Git refspec or open GitHub pull request

	Chapter 43. Running openQA jobs as CI checks
	43.1. Create and monitor openQA jobs from within the CI runner
	43.2. Use webhooks and status reporting APIs of GitHub
	43.3. Run isotovideo directly in the CI runner
	43.3.1. Setup a GitHub access token for openQA
	43.3.2. Setup webhook on GitHub

	Chapter 44. Integrating test results from external systems

	openQA test harness result processing
	Chapter 45. Introduction
	Chapter 46. Usage
	46.1. openQA test distribution

	Chapter 47. Available parser formats
	Chapter 48. Extending the parser
	48.1. OOP Interface
	48.2. Structured data
	48.3. openQA internal test result storage

	openQA client
	Chapter 49. Help
	Chapter 50. Authentication
	50.1. Personal access token

	Chapter 51. Features
	51.1. HTTP Methods
	51.2. HTTP Headers
	51.3. HTTP Body
	51.4. Forms
	51.5. JSON
	51.6. Unicode
	51.7. Host shortcuts
	51.8. Debugging

	Chapter 52. Archive mode

	openQA pitfalls
	Chapter 53. Needle editing
	Chapter 54. 403 messages when using scripts
	Chapter 55. Mixed production and development environment
	Chapter 56. Performance impact
	Chapter 57. DB migration from SQlite to postgreSQL
	Chapter 58. Steps to debug developer mode setup

	Networking in openQA
	Chapter 59. QEMU User Networking
	Chapter 60. TAP Based Network
	60.1. Multi-machine test setup
	60.1.1. What os-autoinst-setup-multi-machine does
	Set up Open vSwitch
	Configure virtual interfaces
	Configure NAT with firewalld

	60.1.2. What is left to do after running os-autoinst-setup-multi-machine
	GRE tunnels
	Configure openQA workers

	60.2. Verify the setup
	60.2.1. Start test VMs manually

	60.3. Debugging Open vSwitch Configuration
	60.4. Debugging GRE tunnels and MTU sizes
	60.4.1. Initial setup for all experiments
	60.4.2. Simple scenario
	60.4.3. Scenario with openvswitch
	60.4.4. GRE tunnel made in openvswitch

	Chapter 61. VDE Based Network
	61.1. Basic, Single Machine Tests

	openQA developer guide
	Chapter 62. Introduction
	Chapter 63. Development guidelines
	63.1. Repository URLs
	63.2. Rules for commits
	63.3. Code style suggestions

	Chapter 64. Getting involved into development
	Chapter 65. Technologies
	Chapter 66. Folder structure
	Chapter 67. Development setup
	67.1. Dependencies
	67.2. Conducting tests
	67.3. Customize base directory
	67.4. Customize configuration directory
	67.5. Setting up the PostgreSQL database
	67.5.1. Importing production data

	67.6. Manual daemon setup
	67.6.1. Further tips

	Chapter 68. Handling of dependencies
	68.1. Javascript and CSS
	68.2. Perl and other packages
	68.3. Remarks regarding CI

	Chapter 69. Managing the database
	69.1. When is it required to update the database schema?
	69.2. How to update the database schema
	69.3. How to add fixtures to the database

	Chapter 70. Adding new authentication module
	Chapter 71. Running tests of openQA itself
	71.1. Run tests without container
	71.2. Run tests within a container
	71.2.1. Tips

	71.3. Logging behavior
	71.4. Test runtime limits

	Chapter 72. CircleCI workflow
	72.1. Dependency artefacts
	72.2. Managing and troubleshooting dependencies
	72.3. Run tests locally using a container
	72.4. Run tests using the circleci tool
	72.5. Changing config.cnf

	Chapter 73. Building plugins
	Chapter 74. Checking for JavaScript problems
	Chapter 75. Profiling the web UI
	75.1. Note

	Chapter 76. Making documentation changes

	openQA branding
	Chapter 77. Web UI template

	Containerized setup
	Chapter 78. Get container images
	78.1. Download Fedora-based images from the Docker Hub
	78.2. Build openSUSE-based images locally

	Chapter 79. Setup with Fedora-based images
	79.1. Data storage and directory structure
	79.2. Update firewall rules
	79.3. Run the data and web UI containers
	79.3.1. Generate and configure API credentials

	79.4. Run the worker container
	79.5. Enable services
	79.6. Get tests, ISOs and create disks

	Chapter 80. Setup openQA with openSUSE-based images and docker-compose
	80.1. Configuration
	80.2. Build images
	80.3. Run the web UI containers in HA mode
	80.4. Generate and configure API credentials
	80.5. Run the worker container
	80.6. Get tests, ISOs and create disks

	Chapter 81. Running jobs
	Chapter 82. Further configuration options
	82.1. Change the OpenID provider
	82.2. Adding workers on other hosts
	82.3. Keeping all data in the Data Volume container
	82.4. Keeping all data on the host system
	82.5. Developing tests with container setup

